Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:28:09.090Z Has data issue: false hasContentIssue false

Planning and control in action

Published online by Cambridge University Press:  01 February 2004

Scott Glover*
Affiliation:
Department of Psychology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom; and Department of Psychology, University of Alberta, Alberta, Calgary, Canadahttp://www.pc.rhbnc.ac.uk/staff/scotglov.html

Abstract:

The views expressed in the commentaries challenge many of the tenets of the planning–control model as espoused in the target article. This response is aimed at addressing the most serious of these challenges as well as clarifying errors of interpretation. It is argued that the majority of the challenges from brain and behavior, although meritorious, can nonetheless be incorporated within the planning–control model. It is concluded that only some minor revision of the model with regard to anatomy is necessary at this time.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J. J., Backes, W., Rijcken, J., Hofman, P., Kuipers, H. & Jolles, J. (2003) Rapid visuomotor preparation in the human brain: A functional MRI study. Cognitive Brain Research 16:110. [JJA, rSG]Google Scholar
Adamovich, S. V., Berkinblitt, M. B., Fookson, O. & Poizner, H. (1998) Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation. Journal of Neurophysiology 79:2833–46. [rSG]Google Scholar
Adamovich, S. V., Berkinblitt, M. B., Fookson, O. & Poizner, H. (1999) Pointing in 3D space to remembered targets. II. Effects of movement speed towards kinaesthetically defined targets. Experimental Brain Research 125:200–10. [rSG]Google Scholar
Aglioti, S., De Souza, J. F. & Goodale, M. A. (1995) Size-contrast illusions deceive the eye but not the hand. Current Biology 5(6):679–85. [arSG, VG]Google Scholar
Albin, R. L., Young, A. B. & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neuroscience 12(10):366–75. [DEV]Google Scholar
Andersen, R. A., Brotchie, P. R. & Mazzoni, P. (1992) Evidence for the lateral intraparietal area as the parietal eye field. Current Opinion in Neurobiology 2:840–46. [MAG]Google Scholar
Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience 20:303–30. [SHJ-F]Google Scholar
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology, section 1: The nervous system, vol. 2: Motor control, ed. Brooks, W. B. American Physiological Society. [aSG, PR]Google Scholar
Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C. & Corbetta, M. (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience 23:4689–99. [rSG, MZ]Google Scholar
Baldwin, J. M. (1892) Origin of volition in childhood. Science 20(511):286–87. [MRL]Google Scholar
Balint, R. (1909) Seelenlahmung des “Schauen,” optische Ataxie, raumliche Storung der Aufmersamkeit. Monatsschrift fur Psychiatrie und Neurologie 25:5781. [aSG]Google Scholar
Bard, C., Turrell, Y., Fleury, M., Teasdale, N., Lamarre, Y. & Martin, O. (1999) Deafferentation and pointing with visual double-step perturbations. Experimental Brain Research 125:410–16. [arSG, PR]Google Scholar
Batista, A. P. & Andersen, R. A. (2001) The parietal reach region codes the next planned movement in a sequential reach task. Journal of Neurophysiology 85(2):539–44. [SHJ-F]Google Scholar
Battaglia-Mayer, A., Ferraina, S., Genovesio, A., Marconi, B., Squatrito, S., Lacquaniti, F. & Caminiti, R. (2001) Eye-hand coordination during reaching. II. An analysis of visuomanual signals in parietal cortex and of their relationship with parieto-frontal association projections. Cerebral Cortex 11:528–44. [MZ]Google Scholar
Battaglia-Mayer, A., Ferraina, S., Mitsuda, T., Marconi, B., Genovesio, A., Onorati, P., Lacquaniti, F. & Caminiti, R. (2000) Early coding of reaching in the parieto-occipital cortex. Journal of Neurophysiology 83:2374–91. [MZ]Google Scholar
Battaglini, P. P., Muzur, A., Galletti, C., Skrap, M., Brovelli, A. & Fattori, P. (2002a) Effects of lesions to area V6A in monkeys. Experimental Brain Research 144:419–22. [PPB, MAG]Google Scholar
Battaglini, P. P., Muzur, A. & Skrap, M. (2003) Visuomotor deficits and fast recovery after area V6A lesion in monkeys. Behavioural Brain Research 139:115–22. [PPB]Google Scholar
Battaglini, P. P., Naranjo, J. R. & Brovelli, A. (2002b) EEG study of the frontoparietal cortical network during reaching movements. FENS Abstract, vol. 1, A074.01, 2002. (http://fens2002.bordeaux.inserm.fr/pages/posters/affich.html). [PPB]Google Scholar
Beckers, G. & Zeki, S. (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118:4960. [aSG]Google Scholar
Beggs, W. D. & Howarth, C. I. (1970) Movement control in man in a repetitive motor task. Nature 221:752–53. [aSG]Google Scholar
Beggs, W. D. & Howarth, C. I. (1972) The accuracy of aiming at a target. Some further evidence for a theory of intermittent control. Acta Psychologica 36:171–77. [aSG]Google Scholar
Bertenthal, B. I. (1996) Origins and early development of perception, action, and representation. Annual Review of Psychology 47:431–59. [JSD]Google Scholar
Bickhard, M. H. (1993) Representational content in humans and machines. Journal of Experimental and Theoretical Artificial Intelligence 5:285333. [AR]Google Scholar
Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J. & Freund, H. J. (1998) Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology 50(5):1253–59. [MAG, arSG, SHJ-F]Google Scholar
Binsted, G., Chua, R., Helsen, W. & Elliott, D. (2001) Eye-hand coordination in goal-directed aiming. Human Movement Science 20:563–85. [aSG]Google Scholar
Binsted, G. & Elliott, D. (1999) Ocular perturbations and retinal/extraretinal information: The coordination of saccadic and manual movements. Experimental Brain Research 127:193206. [GB, aSG, PvD]Google Scholar
Biro, D. & Matsuzawa, T. (1999) Numerical ordering in a chimpanzee (Pan troglodytes): Planning. Executing, and monitoring. Journal of Comparative Psychology 113:178–85. [NK]Google Scholar
Bisiach, E., Capitani, E. & Porta, E. (1985) Two basic properties of space representation in the brain: Evidence from unilateral neglect. Journal of Neurology, Neurosurgery, and Psychiatry 48:141–44. [aSG]Google Scholar
Bisiach, E. & Vallar, G. (1988) Hemineglect in humans. In: Handbook of neuropsychology, vol. 1., ed. Boller, F. & Grafman, J. Elsevier. [arSG]Google Scholar
Blakemore, C. & Cooper, G. F. (1970) Development of the brain depends on the visual environment. Nature 228:477–78. [RL]Google Scholar
Boronat, C., Buxbaum, L. J., Coslett, H. B., Saffran, E. M., Detre, J. & Tang, K. (submitted) Neural representation of function and manipulation knowledge: Converging evidence from functional magnetic resonance imaging. [HBC]Google Scholar
Boussaoud, D., Ungerleider, L. G. & Desimone, R. (1990) Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. Journal of Comparative Neurology 296:462–95. [aSG]Google Scholar
Bradshaw, M. F. & Watt, S. J. (2002) A dissociation of perception and action in normal human observers: The effect of temporal delay. Neuropsychologia 40:1766–78. [aSG]Google Scholar
Brenner, E. & Smeets, J. (1996) Size illusion influences how we lift but not how we grasp an object. Experimental Brain Research 111:473–76. [arSG]Google Scholar
Brenner, E. & Smeets, J. (1997) Fast responses of the human hand to changes in target position. Journal of Motor Behavior 29:297310. [DE]Google Scholar
Brenner, E., Smeets, J. & de Lussanet, M. (1998) Hitting moving targets: Continuous control of the acceleration of the hand on the basis of the target's velocity. Experimental Brain Research 122:467–74. [aSG]Google Scholar
Bridgeman, B. (1991a) Complementary cognitive and motor image processing. In: Presbyopia research: From molecular biology to visual adaptation, pp. 189– 98, ed. Obrecht, G. & Stark, L. Plenum Press. [BB]Google Scholar
Bridgeman, B. (1991b) Separate visual representations for perception and for visually guided behavior. In: Pictorial communication in virtual and real environments, ed. Ellis, S., pp. 316–27. Taylor & Francis. [BB, YC]Google Scholar
Bridgeman, B. (2000) Interactions between vision for perception and vision for behavior. In: Beyond dissociation: Interaction between dissociated implicit and explicit processing, ed. Rossetti, Y. & Revuonso, A., pp. 1740. Benjamins. [YC]Google Scholar
Bridgeman, B., Gemmer, A., Forsman, T. & Huemer, V. (2000) Properties of the sensorimotor branch of the visual system, Vision Research 40:3539–52. [BB]Google Scholar
Bridgeman, B., Kirch, M. & Sperling, A. (1981) Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics 29:336–42. [BB]Google Scholar
Bridgeman, BLewis, S., Heit, G. & Nagle, M. (1979) Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5:692700. [BB, rSG, PR]Google Scholar
Bridgeman, B., Perry, S. & Anand, S. (1997) Interaction of cognitive and sensorimotor maps of visual space. Perception and Psychophysics 59:456–69. [BB, aSG, PvD]Google Scholar
Brouwer, A., Middelburg, T., Brenner, E. & Smeets, J. B. J. (2003) Hitting moving targets: A dissociation between the use of a target's speed and the direction of motion. Experimental Brain Research 152:368–75. [A-MB]Google Scholar
Bruno, N. (2001) When does action resist visual illusions? Trends in Cognitive Sciences 5:379–82. [arSG]Google Scholar
Bruno, N. & Bernardis, P. (2002) Dissociating perception and action in Kanizsa's compression illusion. Psychonomic Bulletin and Review 9:723–30. [PPB]Google Scholar
Bruno, N. & Bernardis, P. (2003) When does action resist visual illusions? Effector position modulates illusory influences on motor responses. Experimental Brain Research 51:225–37. [PPB]Google Scholar
Buneo, C. A., Jarvis, M. A., Batista, A. P. & Andersen, R. A. (2002) Direct visuomotor transformations for reaching. Nature 416:632–36. [MZ]Google Scholar
Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., Lacquaniti, F. & Caminiti, R. (1999) Parieto-frontal coding of reaching: An integrated framework. Experimental Brain Research 129:325–46. [MZ]Google Scholar
Buxbaum, L. J. (2001) Ideomotor apraxia: A call to action. Neurocase 7:445–48. [HBC]Google Scholar
Buxbaum, L. J. & Coslett, H. B. (1997) Subtypes of optic ataxia: Reframing the disconnection account. Neurocase 3:159–66. [HBC, rSG, RN]Google Scholar
Buxbaum, L. J. & Coslett, H. B. (1998) Spatio-motor representations in reaching: Evidence for subtypes of optic ataxia. Cognitive Neuropsychology 15:279312. [HBC]Google Scholar
Buxbaum, L. J., Johnson-Frey, S. H. & Bartlett-Williams, M. (submitted) Deficient internal models for planning object-oriented action in apraxia. [HBC]Google Scholar
Buxbaum, L. J. & Saffran, E. M. (2002) Knowledge of object manipulation and object function: Dissociations in apraxic and non-apraxic subjects. Brain and Language 82:179–99. [HBC]Google Scholar
Buxbaum, L. J., Sirigu, A. S., Klatzky, R. & Schwartz, M. F. (2002) Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41:1091–113. [HBC]Google Scholar
Carey, D. P. (2001) Do action systems resist visual illusions? Trends in Cognitive Sciences 5:109–13. [arSG]Google Scholar
Carey, D. P., Coleman, R. J. & Della Sala, S. (1997) Magnetic misreaching. Cortex 33:639–52. [arSG, RN]Google Scholar
Carey, D. P., Harvey, M. & Milner, A. D. (1996) Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia 34:329–37. [aSG]Google Scholar
Carlton, L. G. (1981) Processing visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance 7:1019–30. [arSG]Google Scholar
Castiello, U., Bennett, K. & Chambers, H. (1998) Reach to grasp: The response to a simultaneous perturbation of object position and size. Experimental Brain Research 120:3140. [aSG]Google Scholar
Castiello, U., Bennett, K. & Stelmach, G. (1993) Reach to grasp: The natural response to perturbation of object size. Experimental Brain Research 94:163–78. [arSG]Google Scholar
Castiello, U. & Jeannerod, M. (1991) Measuring time to awareness. NeuroReport 2:797800. [aSG]Google Scholar
Chao, L. L. & Martin, A. (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–84. [MG]Google Scholar
Chartrand, T. L. & Bargh, J. A. (1999) The chameleon effect: The perceptionbehavior link and social interaction. Journal of Personality and Social Psychology 76(6):893910. [MRL]Google Scholar
Chekaluk, E. & Llewellyn, K. (1992) Saccadic suppression: A functional viewpoint. In: Advances in Psychology 88: The role of eye movements in perceptual processes, ed. Chekaluk, E. & Llewellyn, K. Elsevier. [aSG]Google Scholar
Chieffi, S., Secchi, C. & Gentilucci, M. (in preparation) Mutual influence between speech and arm gestures. [MG]Google Scholar
Choi, S. H., Na, D. L., Kang, E., Lee, K. M., Lee, S. W. & Na, D. G. (2001) Functional magnetic resonance imaging during pantomiming tool-use gestures. Experimental Brain Research 139(3):311–17. [SHJ-F]Google Scholar
Clark, M., Merians, A., Kothari, A., Poizner, H., Macauley, B., Gonzalez Rothi, L. & Heilman, K. M. (1994) Spatial planning deficits in limb apraxia. Brain 117:1093–116. [arSG]Google Scholar
Coello, Y. (2002) Role of environmental cues in position coding. In: Fechner Day 2002, pp. 252–58, ed. Da Silva, J. A., Matsushima, E. H. & Ribeiro-Filho, N. P. Editora Legis Summa. [YC]Google Scholar
Coello, Y. & Magne, P. (2000) Determination of target position in a structured environment: Selection of information for action. European Journal of Cognitive Psychology 12:489519. [YC, rSG]Google Scholar
Coello, Y., Magne, P. & Plenacoste, P. (2000) The contribution of retinal signal to the specification of target distance in a visuo-manual task. Current Psychology Letters 3:7589. [YC]Google Scholar
Coello, Y., Richaud, S., Magne, P. & Rossetti, Y. (2003) Vision for spatial perception and vision for action: A dissociation between the left-right and near-far dimension. Neuropsychologia 41:622–33. [YC]Google Scholar
Cohen, J. (1988) Statistical power analysis for the behavioural sciences. Erlbaum. [rSG]Google Scholar
Collin, N. G., Cowey, A., Latto, R. & Marzi, C. A. (1982) The role of frontal eye-fields and superior colliculi in visual search and non-visual search in rhesus monkeys. Behavioural Brain Research 4(2):177–93. [RL]Google Scholar
Connolly, J. D., Andersen, R. A. & Goodale, M. A. (2003) FMRI evidence for a “parietal reach region” in the human brain. Experimental Brain Research 153:140–45. [MAG]Google Scholar
Connolly, J. D., Goodale, M. A., DeSouza, J. F. X., Menon, R. & Vilis, T. (2000) A comparison of frontoparietal fMRI activation during anti-saccades and antipointing. Journal of Neurophysiology 84:1645–55. [MAG]Google Scholar
Connolly, J. D., Goodale, M. A., Menon, R. S. & Munoz, D. P. (2002) Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience 5:1345–52. [MAG]Google Scholar
Conti, P. & Beaubaton, D. (1980) Role of structured visual field and visual reafference in accuracy of pointing movements. Perceptual and Motor Skills 50:239–44. [YC]Google Scholar
Corbetta, M., Miezin, F., Shulman, G. & Petersen, S. (1993) A PET study of visuospatial attention. Journal of Neuroscience 13:1202–26. [arSG]Google Scholar
Corbetta, M., Shulman, G., Miezin, F. & Petersen, S. (1996) Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270: 802805. [arSG]Google Scholar
Coren, S. & Girgus, J. (1978) Seeing is deceiving: The psychology of visual illusions. Erlbaum. [aSG]Google Scholar
Coull, J. T., Walsh, V., Frith, C. D. & Nobre, A. C. (2003) Distinct neural substrates for visual search amongst spatial versus temporal distractors. Cognitive Brain Research 17:368–79. [SG]Google Scholar
Cowey, A., Small, M. & Ellis, S. (1994) Left visuospatial neglect can be worse in far than in near space. Neuropsychologia 32(9):1059–66. [RL]Google Scholar
Cowey, A., Small, M. & Ellis, S. (1999) No abrupt change in visual hemineglect from near to far space. Neuropsychologia 37(1):16. [RL]Google Scholar
Craggo, P. E., Houk, J. & Hasan, Z. (1976) Regulatory actions of human stretch reflex. Journal of Neurophysiology 39:925–35. [aSG]Google Scholar
Crammond, D. J. & Kalaska, J. (1996) Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Experimental Brain Research 108:4561. [rSG]Google Scholar
Crammond, D. J. & Kalaska, J. (2000) Prior information in motor and premotor cortex: Activity during the delay period and effect on pre-movement activity. Journal of Neurophysiology 84:9861005. [MZ]Google Scholar
Crossman, E. R. & Goodeve, P. (1983) Feedback control of hand-movement and Fitts’ Law. Quarterly Journal of Experimental Psychology 35:251–78. [aSG]Google Scholar
Cubelli, R. & Della Sala, S. (1996) The legacy of automatic/voluntary dissociation in apraxia. Neurocase 2:449–54. [MRL]Google Scholar
Cubelli, R., Marchetti, C., Boscolo, G. & Della Sala, S. (2000) Cognition in action: Testing a model of limb apraxia. Brain and Cognition 44:144–65. [MRL, VCR]Google Scholar
Culham, J. C. (2004) Human brain imaging reveals a parietal area specialized for grasping. In: Attention and performance XX. Functional brain imaging of visual cognition, ed. Kanwisher, N. & Duncan, J. Oxford University Press. [MAG]Google Scholar
Culham, J. C., Danckert, S. L., DeSouza, J. F. X., Gati, J. S., Menon, R. S. & Goodale, M. A. (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research 153:180–89. [MAG, rSG]Google Scholar
Culham, J. C. & Kanwisher, N. G. (2001) Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology 11(2):157–63. [MAG, SHJ-F]Google Scholar
Damasio, A. R. & Benton, A. L. (1979) Impairment of hand movements under visual guidance. Brain 29:170–78. [rSG]Google Scholar
Danckert, J. A., Sharif, N., Haffenden, A. M., Schiff, K. C. & Goodale, M. A. (2002) A temporal analysis of grasping in the Ebbinghaus illusion: Planning versus on-line control. Experimental Brain Research 144:275–80. [MAG, arSG, DAW]Google Scholar
Daprati, E. & Gentilucci, M. (1997) Grasping an illusion. Neuropsychologia 39:1577–82. [arSG]Google Scholar
Dassonville, P. & Bala, J. K. (2002) Roelofs’ illusion provides evidence against a perception/action dissociation. Journal of Vision 2:56a. [PvD]Google Scholar
Dassonville, P., Bridgeman, B., Bala, J., Thiem, P. & Sampanes, A. (in press) A collaborative examination of the Roelofs effect: Two visual systems or the shift of a single reference frame? Vision Research. [BB]Google Scholar
Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Takary, B., Woods, R., Mazziotta, J. & Fazio, F. (1994) Mapping motor representations with positron emission tomography. Nature 371:600602. [aSG]Google Scholar
Deiber, M.-P., Ibanez, V., Honda, M., Sadato, N., Raman, R. & Hallett, M. (1998) Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage 7:7385. [aSG]Google Scholar
Deiber, M.-P., Ibanez, V., Sadato, N. & Hallett, M. (1996) Cerebral structures participating in motor preparation in humans: A positron emission tomography study. Journal of Neurophysiology 75:233–47. [arSG]Google Scholar
DeLoache, J. S., Uttal, D. H. & Rosengren, K. S. (2003) Live from Lilliputia: Scale errors by very young children. Paper presented in a symposium at the Meeting of the Society for Research in Child Development, Tampa, FL, April 2003. [JSD]Google Scholar
DeLong, M. R., Crutcher, M. D. & Georgopoulos, A. P. (1985) Primate globus pallidus and subthalamic nucleus: Functional organization. Journal of Neurophysiology 53(2):530–43. [VG]Google Scholar
Denny-Brown, D. (1958) The nature of apraxia. Journal of Nervous and Mental Disease 126:932. [MRL]Google Scholar
DeRenzi, E. (1982) Disorders of spatial exploration and processing. Wiley. [HBC]Google Scholar
Desmurget, M., Bonnetblanc, F., & Duffau, H. (in preparation) Planning errors in optic ataxia [VG]Google Scholar
Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E. & Grafton, S. T. (1999) Role of the posterior parietal cortex in updating reaching movements to visual targets. Nature Neuroscience 2(6):563–67. [aSG, VG, PR, PvD]Google Scholar
Desmurget, M. & Grafton, S. T. (2000) Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Science 4(11):423–31. [aSG, VG, PR]Google Scholar
Desmurget, M., Gréa, H., Grethe, J. S., Prablanc, C., Alexander, G. E. & Grafton, S. T. (2001) Functional anatomy of nonvisual feedback loops during reaching: A positron emission tomography study. Journal of Neuroscience 21(8):2919–28. [aSG, PR, PvD]Google Scholar
Desmurget, M., Pelisson, D., Rossetti, Y. & Prablanc, C. (1998) From eye to hand: Planning goal-directed movements. Neuroscience and Biobehavioral Review 22:761–88. [aSG, PR]Google Scholar
Desmurget, M. & Prablanc, C. (1997) Postural control of three-dimensional prehension movements. Journal of Neurophysiology 77:452–64. [aSG]Google Scholar
Desmurget, M., Prablanc, C., Arzi, M., Rossetti, Y., Paulignan, Y. & Urquizar, C. (1996) Integrated control of hand transport and orientation during prehension movements. Experimental Brain Research 110:265–78. [aSG]Google Scholar
Desmurget, M., Prablanc, C., Rossetti, Y., Arzi, M., Paulignan, Y., Urquizar, C. & Mignot, J. (1995) Postural and synergic control for three-dimensional movements of reaching and grasping. Journal of Neurophysiology 74:905–10. [aSG]Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91:176–80. [MRL]Google Scholar
Duhamel, J.-R., Colby, C. & Goldberg, M. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092. [aSG]Google Scholar
Dupont, P., Sary, G., Peuskens, H. & Orban, G. A. (2003) Cerebral regions processing first- and higher-order motion in an opposed-direction discrimination task. European Journal of Neuroscience 17:1509–17. [rSG]Google Scholar
Dyde, R. T. & Milner, A. D. (2002) Two illusions of perceived orientation: One fools all of the people some of the time; the other fools all of the people all of the time. Experimental Brain Research 144:518–27. [MAG, aSG]Google Scholar
Edwards, M. G. & Humphreys, G. W. (1999) Pointing and grasping in unilateral visual neglect: Effect of on-line visual feedback in grasping. Neuropsychologia 37:959–73. [arSG]Google Scholar
Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L. & Kleinschmidt, A. (2003) A supramodal number representation in human intraparietal cortex. Neuron 20:719–25. [rSG]Google Scholar
Eidelberg, D. & Galubardi, A. M. (1984) Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. Archives of Neurology 41:843–52. [aSG]Google Scholar
Eklund, G. (1972) Position sense and state of contraction. Journal of Neurology, Neurosurgery, and Psychiatry 35:606–11. [aSG]Google Scholar
Eliasson, A. C., Forssberg, H., Ikuta, K., Apel, I., Westling, G. & Johansson, R. (1995) Development of human precision grip. V. Anticipatory and triggered grip actions during sudden loading. Experimental Brain Research 106:425–33. [rSG]Google Scholar
Elliott, D. (1988) The influence of visual target and limb information on manual aiming. Canadian Journal of Experimental Psychology 42:5768. [GB]Google Scholar
Elliott, D. & Allard, F. (1985) The utilisation of visual feedback information during rapid pointing movements. Quarterly Journal of Experimental Psychology 37A:407–25. [aSG]Google Scholar
Elliott, D., Heath, M., Binsted, G., Ricker, K. L., Roy, E. A. & Chua, R. (1999) Goal-directed aiming: Correcting a force-specification error with the right and left hands. Journal of Motor Behavior 31(4):309–24. [GB]Google Scholar
Elliott, D., Helsen, W. F. & Chua, R. (2001) A century later: Woodworth's (1899) two component model of goal-directed aiming. Psychological Bulletin 127:342–57. [DE, aSG]Google Scholar
Elliott, D. & Madalena, J. (1987) The influence of premovement visual information on manual aiming. Quarterly Journal of Experimental Psychology A 39(3):541–59. [GB, aSG, DEV]Google Scholar
Evarts, E. V. & Vaughn, W. (1978) Intended arm movements in response to externally produced arm displacements in man. In: Progress in Clinical Neurophysiology Cerebral motor control in man: Long loop mechanisms. Karger. [arSG]Google Scholar
Farah, M. J. (1994) Neuropsychological inference with an interactive brain: A critique of the “locality assumption.” Behavioral and Brain Sciences 17:4361. [VCR]Google Scholar
Fattori, P., Gamberini, M., Kutz, D. F. & Galletti, C. (2001) Arm-reaching neurons in the parietal area V6A of the macaque monkey. European Journal of Neuroscience 13:2309–13. [PPB, rSG]Google Scholar
Faugier-Grimaud, S., Frenois, C. & Stein, D. G. (1978) Effect of posterior parietal lesions on visually guided behaviour in monkeys. Neuropsychologia 16:151–68. [MAG]Google Scholar
Fellows, F. J., Noth, J. & Scharz, M. (1998) Precision grip and Parkinson's disease. Brain 121:1771–84. [rSG]Google Scholar
Ferrandez, A. M., Hugueville, L., Lehericy, S., Poline, J. B., Marsault, C. & Pouthas, V. (2003) Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. Neuroimage 19:1532–44. [rSG]Google Scholar
Ferro, J. M. (1984) Transient inaccuracy in reaching caused by a posterior parietal lobe lesion. Journal of Neurology, Neurosurgery, and Psychiatry 47:1016–19. [rSG]Google Scholar
Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P. & Orban, G. A. (2003) Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience 15:4756. [rSG]Google Scholar
Fieller, E. C. (1954) Some problems in interval estimation. Journal of the Royal Statistical Society B 16(2):175–85. [VHF]Google Scholar
Fikes, T. G., Klatzky, R. & Lederman, S. (1994) Effects of object texture on precontact movement time in human prehension. Journal of Motor Behavior 26:325–32. [aSG]Google Scholar
Filion, M., Tremblay, L. & Bedard, P. J. (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in Parkinsonian monkeys. Brain Research 444(1):165–76. [VG]Google Scholar
Fischer, M. H. (2001) How sensitive is hand transport to illusory context effects? Experimental Brain Research 136:224–30. [aSG]Google Scholar
Fischer, M. H. & Adam, J. J. (2001) Distractor effects on pointing: The role of spatial layout. Experimental Brain Research 136:507–13. [JJA]Google Scholar
Fitts, P. M. (1957) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47:381–91. [aSG, PR]Google Scholar
Flanagan, J. R. & Beltzner, M. A. (1999) Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nature Neuroscience 3:737–41. [rSG, DAW]Google Scholar
Flanders, M., Helms Tillery, S. I. & Soechting, J. F. (1992) Early stages in a sensorimotor transformation. Behavioral and Brain Sciences 15:309–62. [GB]Google Scholar
Flash, T. & Henis, E. (1991) Arm trajectory modifications during reaching towards visual targets. Journal of Cognitive Neuroscience 3(3):220–30. [VG]Google Scholar
Fleming, J., Klatzky, R. L. & Behrmann, M. (2002) Time course of planning for object and action parameters in visually guided manipulation. Visual Cognition 9:502507. [aSG]Google Scholar
Fogassi, L., Gallese, V., Gentilucci, M., Chieffi, S. & Rizzolatti, G. (1991) Kinematic study of reaching-grasping movements in the monkey. Bollettino della Societa’ Italiana di Biologia Sperimentale 67:715–21. [rSG]Google Scholar
Foley, J. M. (1980) Stereoscopic distance perception. In: Pictorial communication, pp. 558–66, ed. Ellis, S. R. Taylor & Francis. [YC]Google Scholar
Fontaine, R. (1984) Imitative skills between birth and six months. Infant Behavior and Development 7:323–33. [MRL]Google Scholar
Franz, V. H. (2001) Action does not resist visual illusions. Trends in Cognitive Sciences 5:457–59. [arSG]Google Scholar
Franz, V. H. (2003) Planning versus online control: Dynamic illusion effects in grasping? Spatial Vision 16(3–4):211–23. [VHF, MAG, rSG]Google Scholar
Franz, V. H. (2003) (submitted) Confidence limits for ratios. [VHF]Google Scholar
Franz, V. H., Bulthoff, H. H. & Fahle, M. (2003) Grasp effects of the Ebbinghaus illusion: Obstacle-avoidance is not the explanation. Experimental Brain Research 149:470–77. [VHF]Google Scholar
Franz, V. H., Fahle, M., Bulthoff, H. H. & Gegenfurtner, K. R. (2001) Effects of visual illusions on grasping. Journal of Experimental Psychology: Human Perception and Performance 27(5):1124–44. [VHF, arSG]Google Scholar
Franz, V. H., Gegenfurtner, K. R., Bulthoff, H. H. & Fahle, M. (2000) Grasping visual illusions: No evidence for a dissociation between perception and action. Psychological Science 11(1):2025. [VHF, arSG]Google Scholar
Franz, V. H. & Scharnowski, F. (2003) Grasp effects of visual illusions: Dynamic or stationary? Paper presented at the Vision Sciences Society Conference, Sarasota, FL, May 2003. [VHF]Google Scholar
Frith, C., Perry, R. & Lumer, E. (1999) The neural correlates of conscious experience: An experimental framework. Trends in Cognitive Sciences. 3:105–14. [MAG]Google Scholar
Gabor, D. (1946) Theory of communication. Journal of the Institute of Electric Engineering 93:429–57. [LCLS]Google Scholar
Galletti, C., Battaglini, P. P. & Fattori, P. (1997a). The posterior parietal cortex in humans and monkeys. News in Physiological Sciences 12:166–71. [PPB]Google Scholar
Galletti, C., Fattori, P., Kutz, D. F. & Battaglini, P. P. (1997b) Arm-movement related neurons in the visual area V6A of the macaque superior parietal lobule. European Journal of Neuroscience 9:410–13. [PPB, MAG]Google Scholar
Gentilucci, M. (2002) Object motor representation and reaching-grasping control. Neuropsychologia 40:1139–53. [MG, MRL]Google Scholar
Gentilucci, M. (2003a) Grasp observation influences speech production. European Journal of Neuroscience 17:179–84. [MG]Google Scholar
Gentilucci, M. (2003b) Object familiarity affects fingers’ shaping during grasping fruit stalks. Experimental Brain Research 149:395400. [MG]Google Scholar
Gentilucci, M. (2003c) Object motor representation and language. Experimental Brain Research 153:260–65. [MG]Google Scholar
Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E. & Gangitano, M. (2000a) Language and motor control. Experimental Brain Research 133:468–90. [arSG]Google Scholar
Gentilucci, M., Benuzzi, F. & Gangitano, M. (2001) Grasp with hand and mouth: A kinematic study on healthy subjects. Journal of Neurophysiology 86:1685–99. [MG]Google Scholar
Gentilucci, M., Bertolani, L., Benuzzi, F., Negrotti, A., Pavesi, G. & Gangitano, M. (2000b) Impaired control of an action after supplementary motor area lesion: A case study. Neuropsychologia 38:1398–404. [MG]Google Scholar
Gentilucci, M., Chieffi, S., Daprati, E., Saetti, M. & Toni, I. (1996) Visual illusion and action. Neuropsychologia 34:369–76. [arSG]Google Scholar
Gentilucci, M., Chieffi, S., Scarpa, M. & Castiello, U. (1992) Temporal coupling between transport and grasp components during prehension movements: Effects of visual perturbation. Behavioural Brain Research 47:7182. [MG]Google Scholar
Gentilucci, M., Daprati, E., Gangitano, M. & Toni, I. (1997a) Eye position tunes the contribution of allocentric and egocentric information to target localisation in human goal directed arm movements. Neuroscience Letters 222:123–26. [MG]Google Scholar
Gentilucci, M., Daprati, E., Toni, I., Chieffi, S. & Saetti, M. (1995) Unconscious updating of grasp motor program. Experimental Brain Research 105:291303. [aSG]Google Scholar
Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R. & Rizzolatti, G. (1988) Functional organization of inferior area 6 in the macaque monkey. Experimental Brain Research 71:475–90. [rSG]Google Scholar
Gentilucci, M. & Gangitano, M. (1998) Influence of automatic word reading on motor control. European Journal of Neuroscience 10:752–56. [aSG]Google Scholar
Gentilucci, M., Negrotti, A. & Gangitano, M. (1997b) Planning an action. Experimental Brain Research 115:116–28. [aSG]Google Scholar
Gentilucci, M., Toni, I., Chieffi, S. & Pavesi, G. (1994) The role of proprioception in the control of prehension movements: A kinematic study in a peripherally deafferented patient and in normal subjects. Experimental Brain Research 99:483500. [arSG]Google Scholar
Georgopolous, A. P., Kalaska, J. & Massey, J. (1981) Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology 4:725–43. [aSG, PR]Google Scholar
Ghilardi, M. F., Alberoni, M., Rossi, M., Franceschi, M., Mariani, C. & Fazio, F. (2000) Visual feedback has differential effects on reaching movements in Parkinson's and Alzheimer's disease. Brain Research 876(1–2):112–23. [DEV]Google Scholar
Glickstein, M. (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends in Neurosciences 23:613–17. [aSG]Google Scholar
Glickstein, M., Buchbinder, S. & May, J. L. (1998) Visual control of the arm, the wrist and the fingers: Pathways through the brain. Neuropsychologia 36:9811001. [MAG]Google Scholar
Glover, S. (2002) Visual illusions affect planning but not control. Trends in Cognitive Sciences 6:288–92. [A-MB, arSG]Google Scholar
Glover, S. (2003) Optic ataxia as a deficit specific to the on-line control of actions. Neuroscience and Biobehavioral Reviews 27:447–56. [rSG]Google Scholar
Glover, S. & Dixon, P. (2001a) Dynamic illusion effects in a reaching task: Evidence for separate visual representations in the planning and control of reaching. Journal of Experimental Psychology: Human Perception and Performance 27:560–72. [A-MB, VHF, arSG, DAW]Google Scholar
Glover, S. & Dixon, P. (2001b) Motor adaptation to an optical illusion. Experimental Brain Research 137:254–58. [A-MB, VHF, arSG]Google Scholar
Glover, S. & Dixon, P. (2001c) The role of vision in the on-line correction of illusion effects on action. Canadian Journal of Experimental Psychology 55(2):96103. [MAG, arSG, VG, PMV]Google Scholar
Glover, S. & Dixon, P. (2002a) Dynamic effects of the Ebbinghaus illusion in grasping: Support for a planning-control model of action. Perception and Psychophysics 64(2):266–78. [A-MB, VHF, arSG, PMV]Google Scholar
Glover, S. & Dixon, P. (2002b) Semantics affect the planning but not control of grasping. Experimental Brain Research 146(3):383–87. [VHF, arSG]Google Scholar
Glover, S., Miall, R. C. & Rushworth, M. F. S. (in press) Parietal rTMS selectively disrupts the initiation of on-line adjustments to a perturbation of target size. Journal of Cognitive Neuroscience [rSG]Google Scholar
Glover, S., Rosenbaum, D. A., Graham, J. R. & Dixon, P. (2004) Grasping the meaning of words. Experimental Brain Research 154:103108. [arSG]Google Scholar
Gnadt, J. W. & Andersen, R. (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. [aSG]Google Scholar
Godschalk, M., Lemon, R., Nijs, H. & Kuypers, H. (1981) Behavior of neurons in monkey peri-arcuate and precentral cortex before and during visually guided arm and hand movements. Experimental Brain Research 44:113–16. [rSG]Google Scholar
Goldberg, G. (1985) Response and projection: A reinterpretation of the premotor concept. In: Neuropsychological studies of apraxia and related disorders, ed. Roy, E. A., pp. 251–66. North-Holland/Elsevier Science. [MRL]Google Scholar
Goldberg, G. (1987) From intent to action: Evolution and function of the premotor systems of the frontal lobe. In: The frontal lobes revisited, ed. Perecman, E., pp. 273306. IRBN Press. [MRL]Google Scholar
Goldenberg, G. & Hagmann, S. (1997) The meaning of meaningless gestures: A study of visuo-imitative apraxia. Neuropsychologia 35(3):333–41. [MRL]Google Scholar
Gonzalez Rothi, L. J. & Heilman, K. M. (1984) Acquisition and retention of gestures by apraxic patients. Brain and Cognition 3:426–37. [HBC, rSG]Google Scholar
Goodale, M. A. (2001) Different spaces and different times for perception and action. Progress in Brain Research 134:313–31. [JGP]Google Scholar
Goodale, M. A., Jakobson, L. & Keillor, J. (1994a) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32:1159–78. [aSG]Google Scholar
Goodale, M. A., Jakobson, L., Milner, A., Perrett, D., Benson, P. & Hietanen, J. (1994b) The nature and limits of orientation and pattern processing supporting visuomotor control in a visual form agnosic. Journal of Cognitive Neuroscience 6:4656. [aSG]Google Scholar
Goodale, M. A., Meenan, J. P., Bulthoff, H. H., Nicolle, D. A., Murphy, K. J. & Racicot, C. I. (1994c) Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology 4(7):604–10. [SHJ-F, aSG]Google Scholar
Goodale, M. A. & Milner, A. (1992) Separate visual pathways for perception and action. Trends in Neuroscience 15:2025. [DE, MAG, aSG, ZK, RL]Google Scholar
Goodale, M. A., Milner, A., Jakobson, L. & Carey, D. (1990) Kinematic analysis of limb movements in neuropsychological research: Subtle deficits and recovery of function. Canadian Journal of Psychology 44:180–95. [aSG]Google Scholar
Goodale, M. A., Milner, A., Jakobson, L. & Carey, D. (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–56. [aSG]Google Scholar
Goodale, M. A., Pelisson, D. & Prablanc, C. (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–50. [arSG, PR]Google Scholar
Goodale, M. A., Westwood, D. A. & Milner, A. D. (2004) Two distinct modes of control for object-directed action. Progress in Brain Research 144:131–44. [DAW]Google Scholar
Gordon, A. M., Forssberg, H., Johansson, R. & Westling, G. (1991) Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research 83:477–82. [aSG]Google Scholar
Grabowski, T. J., Damasio, H. & Damasio, A. R. (1998) Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage 7:232–43. [MG]Google Scholar
Grafton, S. T., Arbib, M., Fadiga, L. & Rizzolatti, G. (1996) Localization of grasp representations in humans by positron emission tomography. II. Observation compared with imagination. Experimental Brain Research 112:103–11. [aSG]Google Scholar
Grafton, S. T., Fadiga, L., Arbib, M. A. & Rizzolatti, G. (1997) Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6:231–36. [MG]Google Scholar
Grafton, S. T., Fagg, A. & Arbib, M. A. (1998) Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Journal of Neurophysiology 79:1092–97. [arSG]Google Scholar
Grafton, S. T., Mazziotta, J., Woods, R. & Phelps, M. (1992) Human functional anatomy of visually guided finger movements. Brain 115:565–87. [aSG]Google Scholar
Grea, H., Pisella, L., Rossetti, Y., Desmurget, M., Tilikete, C., Grafton, S., Prablanc, C. & Vighetto, A. (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40:2471–80. [MAG, arSG, RN]Google Scholar
Grealy, M. A., Coello, Y. & Heffernen, D. (2003) Constructing visual space from apparent motion distorts the perception of object location. Experimental Brain Research 150:356–62. [YC]Google Scholar
Gregory, R. L. (1968) Visual illusions. Scientific American 219:6676. [aSG]Google Scholar
Guard, O., Perenin, M. T., Vighetto, A., Giroud, M., Tommasi, M. & Dumas, R. (1984) Bilateral parietal syndrome approximating a Balint syndrome. Reviews in Neurology 140(5):358–67. [SHJ-F]Google Scholar
Guiard, Y. (1988) The kinematic chain as a model for human asymmetrical bimanual cooperation. In: Cognition and action in skilled behavior, ed. Colley, A. M. & Beech, J. R., pp. 205–28. North-Holland. [JGP]Google Scholar
Guillaume, A., Goffart, L., Courjon, J. H. & Pelisson, D. (2000) Altered visuomotor behavior during inactivation of the caudal fastigial nucleus in the cat. Experimental Brain Research 132(4):457–63. [VG]Google Scholar
Haaland, K. Y., Harrington, D. L. & Knight, R. (1999) Spatial deficits in ideomotor limb apraxia: A kinematic analysis of aiming movements. Brain 122:1169–82. [MAG, aSG]Google Scholar
Haaland, K. Y., Harrington, D. L. & Knight, R. (2000) Neural representations of skilled movement. Brain 123:2306–13. [SHJ-F]Google Scholar
Hacean, H. & Ajuriaguerra, J. (1964) Left-handedness: Manual superiority and cerebral dominance. Grune and Stratton. [aSG]Google Scholar
Haffenden, A. M. & Goodale, M. A. (1998) The effect of pictorial illusion on prehension and perception. Journal of Cognitive Neuroscience 10:122–36. [arSG]Google Scholar
Haffenden, A. M. & Goodale, M. A. (2000) The effect of learned perceptual associations on visuomotor programming varies with kinematic demands. Journal of Cognitive Neuroscience 12:950–64. [arSG]Google Scholar
Haffenden, A. M. & Goodale, M. A. (2002a) Learned perceptual associations influence visuomotor programming under limited conditions: Cues as surface patterns. Experimental Brain Research 147:473–84. [rSG]Google Scholar
Haffenden, A. M. & Goodale, M. A. (2002b) Learned perceptual associations influence visuomotor programming under limited conditions: Kinematic consistency. Experimental Brain Research 147:485–93. [rSG]Google Scholar
Haffenden, A. M., Schiff, K. C. & Goodale, M. A. (2001) The dissociation between perception and action in the Ebbinghaus illusion: Nonillusory effects of pictorial cues on grasp. Current Biology 11:177–81. [arSG]Google Scholar
Haggard, P. (1998) Planning of action sequences. Acta Psychologica 99:201–15. [aSG]Google Scholar
Hallett, P. E. & Lightstone, A. (1976) Saccadic eye movements towards visual stimuli triggered by prior saccades. Vision Research 16:97106. [aSG]Google Scholar
Hamada, I., DeLong, M. R. & Mano, N. (1990) Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. Journal of Neurophysiology 64(6):1892–906. [VG]Google Scholar
Harris, C. M. & Wolpert, D. M. (1998) Signal-dependent noise determines motor planning. Nature 394:780–84. [MZ]Google Scholar
Harris, L. J. (1993) Handedness in apes and monkeys: Some views from the past. In: Primate laterality: Current behavioral evidence of primate asymmetries, ed. Ward, J. P. & Hopkins, W. Springer-Verlag. [aSG]Google Scholar
Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P. & Grady, C. L. (1994) The functional organization of human extrastriate cortex: A PET – rCBF study of selective attention to faces and locations. Journal of Neuroscience 14:6336–53. [arSG]Google Scholar
Hay, L., Beaubaton, D. (1986) Visual correction of a rapid goal-directed response. Perceptual and motor skills 52:6167. [aSG]Google Scholar
Heath, M. & Binsted, G. (2003) Limb position predicts endpoint for memory – but not visually guided reaching: A new method for inferring control. Paper presented at the Conference on Sensori-Motor Coordination: Behavioral Modes and Neural Mechanisms, Queensland, Australia, July 2003. [GB]Google Scholar
Heath, M., Hodges, N. J., Chua, R. & Elliott, D. (1998) On-line control of rapid aiming movements: Unexpected target perturbations and movement kinematics. Canadian Journal of Experimental Psychology 52:163–73. [GB, DE]Google Scholar
Heath, M., Westwood, D. & Binsted G. (2004) The control of memory-guided reaching movements in peripersonal space. Motor Control 8:76106. [GB]Google Scholar
Heilman, K. M., Bowers, D., Coslett, H., Whelan, H. & Watson, R. (1985) Directional hypokinesia: Prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology 35:855–59. [aSG]Google Scholar
Heilman, K. M. & Gonzalez Rothi, L. (1993) Apraxia. In: Clinical neuropsychology, 3rd edition, ed. Heilman, K. & Valenstein, E. Oxford University Press. [arSG]Google Scholar
Heilman, K. M., Rothi, L. J. G. (1997) Limb apraxia: A look back. In: Apraxia: The neuropsychology of action, ed. Rothi, L. J. G. & Heilman, K. M., pp. 718. Psychology Press/Erlbaum/Taylor & Francis. [SHJ-F]Google Scholar
Hendry, S. H. C. & Yoshioka, T. (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–77. [LCLS]Google Scholar
Hermsdorfer, J., Mai, N., Spatt, J., Marquardt, C., Veltkamp, R. & Goldenberg, G. (1996) Kinematic analysis of movement imitation in apraxia. Brain 119:1575–86. [aSG]Google Scholar
Hermsdorfer, J., Ulrich, S., Marquardt, C., Goldenberg, G. & Mai, N. (1999) Prehension with the ipsilesional hand after unilateral brain damage. Cortex 35:139–61. [aSG]Google Scholar
Hoff, B. & Arbib, M. A. (1992) A model of the effects of speed, accuracy, and perturbation on visually guided reaching. Experimental Brain Research 22:285306. [PR]Google Scholar
Holmes, G. (1918) Disturbance of visual orientation. British Journal of Opthalmology 2:449–68. [aSG]Google Scholar
Hommel, B. (2000) The prepared reflex: Automaticity and control in stimulusresponse translation. In: Control of cognitive processes: Attention and performance XVIII, ed. Monsell, S. & Driver, J., pp. 247–73. MIT Press. [MRL]Google Scholar
Hopkins, W. D. (1996) Chimpanzee handedness revisited: 55 years since Finch (1941). Psychonomic Bulletin and Review 3:449–57. [aSG]Google Scholar
Hopkins, W. D. & Cantero, M. (2003) From hand to mouth in the evolution of language: The influence of vocal behavior on lateralized hand use in manual gestures by chimpanzees (Pan troglodytes). Developmental Science 6:5561. [NK]Google Scholar
Howard, I. P. (1982) Human visual orientation. Wiley. [MAG]Google Scholar
Hu, Y. & Goodale, M. A. (2000) Grasping after a delay shifts size-scaling from absolute to relative metrics. Journal of Cognitive Neuroscience 12:856–68. [aSG]Google Scholar
Hyvarinen, J. & Poranen, A. (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–92. [MZ]Google Scholar
Ietswaart, M., Carey, D. P., Della Sala, S. & Dijkhuizen, R. (2001) Memory-driven movements in limb apraxia: Is there evidence for impaired communication between the dorsal and ventral streams? Neuropsychologia 39:950–61. [MAG, aSG, VCR]Google Scholar
Imaruoka, T., Yanagida, T. & Miyauchi, S. (2003) Attentional set for external information activates the right intraparietal area. Cognitive Brain Research 16:199209. [rSG]Google Scholar
Inoue, K., Kawashima, R., Satoh, K., Kinomura, S., Goto, R., Koyama, M., Sugiura, M., Ito, M. & Fukuda, H. (1998) PET study of pointing with visual feedback of moving hands. Journal of Neurophysiology 79(1):117–25. [aSG, VG]Google Scholar
Jackson, G. M., Jackson, S. R., Husain, M., Harvey, M., Kramer, T. & Dow, L. (2000) The coordination of bimanual prehension movements in a centrally deafferented patient. Brain 123:380–93. [arSG]Google Scholar
Jackson, S. R., Newport, R., Mort, D., Husain, M., Jackson, G. M., Swainson, R., Pears, S. & Wilson, B. (2004) Action binding and the parietal lobes: Some new perspectives on optic ataxia. In: Attention in action, ed. Humphreys, G. W. & Riddoch, M. J. Psychology Press. [rSG, RN]Google Scholar
Jackson, S. R. & Shaw, A. (2000) The Ponzo illusion affects grip force but not grip aperture scaling during prehension movements. Journal of Experimental Psychology: Human Perception and Performance 26:418–23. [aSG]Google Scholar
Jakobson, L. S., Archibald, Y., Carey, D. & Goodale, M. A. (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29:803809. [arSG]Google Scholar
Jakobson, L. S. & Goodale, M. A. (1991) Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research 86:199208. [arSG]Google Scholar
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A. (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain 126:2463–75. [MAG]Google Scholar
Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. In: Attention and performance IX, ed. Long, J. & Baddeley, A. Erlbaum. [aSG]Google Scholar
Jeannerod, M. (1984) The timing of natural prehension movements. Journal of Motor Behavior 16:235–54. [arSG]Google Scholar
Jeannerod, M. (1986) The formation of finger grip during prehension: A cortically mediated visuomotor pattern. Behavioural Brain Research 19(2):99116. [arSG, SHJ-F]Google Scholar
Jeannerod, M. (1988) The neural and behavioural organization of goal-directed movements. Oxford University Press. [arSG]Google Scholar
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17:187245. [aSG]Google Scholar
Jeannerod, M. (1997) The cognitive neuroscience of action. Blackwell. [aSG]Google Scholar
Jeannerod, M., Arbib, M., Rizzolatti, G. & Sakata, H. (1995) Grasping objects: The cortical mechanisms of visuomotor transformation. Trends in Neurosciences 7:314–20. [aSG]Google Scholar
Jeannerod, M., Decety, J. & Michel, F. (1994) Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32:369–80. [aSG]Google Scholar
Jeannerod, M., Michel, F. & Prablanc, C. (1984) The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107:899920. [arSG]Google Scholar
Johansson, R. S. & Cole, K. J. (1992) Sensory-motor coordination during grasping and manipulative actions. Current Opinions in Neurobiology 2:815–23. [MZ]Google Scholar
Johansson, R. S. & Westling, G. (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research 56:550–64. [rSG]Google Scholar
Johansson, R. S. & Westling, G. (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research 71:5971. [rSG]Google Scholar
Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. (1996) Cortical networks for visual reaching: Physiological and anatomical organization of frontal and parietal lobe arm regions. Cerebral Cortex 6:102–18. [rSG]Google Scholar
Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S. & Heinze, H-J. (2002) Selective activation of a parieto-frontal circuit during implicitly imagined prehension. Neuroimage 17:1693–704. [SHJ-F]Google Scholar
Johnson-Frey, S. H. (2003) Cortical mechanisms of human tool use. In: Taking action: Cognitive neuroscience perspectives on the problem of intentional acts, ed. Johnson-Frey, S. H. MIT Press. [SHJ-F]Google Scholar
Johnson-Frey, S. H., Funnell, M. G. & Gazzaniga, M. S. (submitted) A dissociation between tool use skills and hand dominance: Insights from left- and righthanded callosotomy patients. [SHJ-F]Google Scholar
Johnson-Frey, S. H. & Grafton, S. T. (2003) From “Acting On” to “Acting With”: The functional anatomy of action representation. In: Space coding and action production, ed. Prablanc, D. P. C. & Rossetti, Y. Elsevier. [SHJ-F]Google Scholar
Jones, B. (1974) Role of central monitoring of efference in short term memory for movements. Journal of Experimental Psychology 102:3743. [aSG]Google Scholar
Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L. & Ernst, T. (2001) Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience 15:1048–58. [arSG]Google Scholar
Kalaska, J. F. & Crammond, D. (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–23. [aSG]Google Scholar
Kalaska, J. F., Sergio, L. E. & Cisek, P. (1998) Cortical control of whole-arm motor tasks. Novartis Foundation Symposium 218:176–90. [MZ]Google Scholar
Kaldy, Z. & Kovacs, I. (2003) Visual context integration is not fully developed in 4- year-old children. Perception 32:657–66. [ZK]Google Scholar
Kanizsa, G. (1975) Amodal completion and phenomenal shrinkage of surfaces in the visual field. Italian Journal of Psychology 2:187–95. [PPB]Google Scholar
Kantowitz, B. H., Triggs, T. J. & Barnes, V. E. (1990) Stimulus-response compatibility and human factors. In: Stimulus-response compatibility, ed. Proctor, R. W. & Reeve, T. G., pp. 365–88. North-Holland. [JGP]Google Scholar
Kanwisher, N. (2001) Neural events and perceptual awareness. Cognition 79:89113. [AR]Google Scholar
Kawai, N. (2001) Ordering and planning in sequential responding to Arabic numerals by a chimpanzee. Psychologia 44:6069. [NK]Google Scholar
Kawai, N. & Matsuzawa, T. (2000a) A conventional approach to chimpanzee cognition. Trends in Cognitive Science 4:128–29. [NK]Google Scholar
Kawai, N. & Matsuzawa, T. (2000b) Numerical memory span in a chimpanzee. Nature 403:3940. [NK]Google Scholar
Kawai, N. & Matsuzawa, T. (2001a) “Magical number 5” in a chimpanzee. Behavioral and Brain Sciences 24:127–28. [NK]Google Scholar
Kawai, N. & Matsuzawa, T. (2001b) Reproductive memory processes in chimpanzees: Homologous approaches to research on human working memory. In: Primate origins of human cognition and behavior, ed. Matsuzawa, T. Springer-Verlag. [NK]Google Scholar
Keele, S. W. (1968) Movement control in skilled motor performance. Psychological Bulletin 70:387403. [aSG]Google Scholar
Keele, S. W. & Posner, M. (1968) Processing of visual feedback in rapid movements. Journal of Experimental Psychology 77:155–58. [aSG, PR]Google Scholar
Kellenbach, M. L., Brett, M. & Patterson, K. (2003) Actions speak louder than functions: The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience 15:3046. [HBC]Google Scholar
Kelso, J. A., Buchanan, J. & Murata, T. (1994) Multifunctionality and switching in the coordination dynamics of reaching and grasping. Human Movement Science 13:6394. [aSG]Google Scholar
Kertzmann, C., Schwarz, U., Zeffiro, T. & Hallett, M. (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Experimental Brain Research 114(1):170–83. [aSG, SHJ-F]Google Scholar
Kettner, R. E., Marcario, J. & Clark-Phelps, M. (1996) Control of remembered reaching sequences in monkey. I. Activity during movement in motor and premotor cortex. Experimental Brain Research 112:335–46. [rSG]Google Scholar
Keulen, R. F., Adam, J. J., Fischer, M. H., Kuipers, H. & Jolles, J. (2002) Selective reaching: Evidence for multiple frames of reference. Journal of Experimental Psychology: Human Perception and Performance 28:515–26. [JJA]Google Scholar
Keulen, R. F., Adam, J. J., Fischer, M. H., Kuipers, H. & Jolles, J. (2003) Distractor interference in selective reaching: Dissociating distance and grouping effects. Journal of Motor Behavior 35:119–26. [JJA]Google Scholar
Kimura, D. (1979) Neuromotor mechanisms in the evolution of human communication. In: Neurobiology of social communication in primates: An evolutionary perspective, ed. Steklis, H. D. & Paleigh, M. Academic Press. [arSG]Google Scholar
Kinsbourne, M. (1987) Mechanisms of unilateral neglect. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M. Elsevier. [aSG]Google Scholar
Kinsbourne, M. (2002) The role of imitation in body ownership and mental growth. In: The imitative mind: Development, evolution, and brain bases, ed. Meltzoff, A. N. & Prinz, W., pp. 311–30. Cambridge University Press. [MRL]Google Scholar
Kitazawa, S., Kimura, T. & Yin, P.-B. (1998) Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392:494–97. [aSG]Google Scholar
Klatzky, R. L., Fikes, T. & Pellegrino, J. (1995) Planning for hand shape and arm transport when reaching for objects. Acta Psychologica 88:209–32. [aSG]Google Scholar
Klatzky, R. L., McCloskey, B., Doherty, S., Pellegrino, J. & Smith, T. (1987) Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior 19:187213. [aSG]Google Scholar
Klatzky, R. L., Pellegrino, J., McCloskey, B. & Doherty, S. (1989) Can you squeeze a tomato? The role of motor representations in semantic sensibility judgments. Journal of Memory and Language 28:5677. [aSG]Google Scholar
Klockgether, T., Borutta, M., Rapp, H., Spieker, S. & Dichgans, J. (1995) A defect of kinesthesia in Parkinson's disease. Movement Disorders 10(4):460–65. [VG]Google Scholar
Kolb, B. & Whishaw, I. Q. (1995) Fundamentals of human neuropsychology. Freeman. [arSG]Google Scholar
Kovacs, I. (2000) Human development of perceptual organization. Vision Research 40:1301–10. [ZK]Google Scholar
Krams, M., Rushworth, M., Deiber, M.-P., Frackowiak, R. & Passingham, R. (1998) The preparation, execution, and suppression of copied movements in the human brain. Experimental Brain Research 120:386–98. [arSG]Google Scholar
Lacquaniti, F. (1997) Frames of reference in sensorimotor coordination. In: Handbook of Neuropsychology, vol. 11, ed. Boller, F. & Grafman, J., pp. 2764. Elsevier. [MZ]Google Scholar
Lamne, A. F. V. (2003) Why visual attention and awareness are different. Trends in Cognitive Sciences 7(1):1218. [AR]Google Scholar
Lamotte, R. H. & Acuna, C. (1978) Deficits in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Research 139:309–26. [rSG]Google Scholar
Land, M. F. & Nilsson, D. E. (2002) Animal eyes. Oxford University Press. [LCLS]Google Scholar
Latto, R. (1978a) The effects of bilateral frontal eye-field lesions on the learning of a visual search task by rhesus monkeys. Brain Research 147(2):370–76. [RL]Google Scholar
Latto, R. (1978b) The effects of bilateral frontal eye-field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey. Brain Research 146(1):3550. [RL]Google Scholar
Latto, R. (1986) The role of inferior parietal cortex and the frontal eye-fields in visuospatial discriminations in the macaque monkey. Behavioural Brain Research 22(1):4152. [RL]Google Scholar
Lausberg, H., Gottert, R., Munssinger, U., Boegner, F. & Marx, P. (1999) Callosal disconnection syndrome in a left-handed patient due to infarction of the total length of the corpus callosum. Neuropsychologia 37(3):253–65. [SHJ-F]Google Scholar
Lawrence, A. D. (2000) Error correction and the basal ganglia: Similar computations for action, cognition and emotion? Trends in Cognitive Sciences 4(10):365–67. [VG]Google Scholar
Lee, J.-H. & van Donkelaar, P. (2002) Dorsal and ventral visual stream contributions to perception-action interactions during pointing. Experimental Brain Research 143:440–46. [PvD]Google Scholar
Lee, R. G. & Tatton, W. (1975) Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Canadian Journal of Neurological Science 2:285–93. [aSG]Google Scholar
Leiguarda, R. C. & Marsden, C. D. (2000) Limb apraxias: Higher-order disorders of sensorimotor integration. Brain 123:860–79. [SHJ-F]Google Scholar
Lhermitte, F., Pillon, B. & Serdaru, M. (1986) Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology 19:326–34. [MRL]Google Scholar
Liepmann, H. (1900) Das Krankheitshildder der Apraxie (Motor/Asymbolie). Monatschrift für Psychiatrie und Neurologie 8:1544:102–32. [VCR]Google Scholar
Liepmann, H. (1920) Apraxie. Ergenbisse der Gesamten Medzin 1:516–43. [aSG]Google Scholar
Livingstone, M. S. & Hubel, D. H. (1988) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240(4853):740–49. [VHF, RL, CEW]Google Scholar
Loftus, G. R. (1996) Psychology will be a much better science when we change the way we analyze data. Current Directions in Psychological Science 5:161–71. [rSG]Google Scholar
Longo, M. R. (2003) Observation, execution, and perseverative reaching in the A-not-B error. Poster presented at the biennial meeting of the Society for Research in Child Development, Tampa, FL, April 2003. [MRL]Google Scholar
Mack, A., Heuer, F., Villardi, K. & Chambers, D. (1985) The dissociation of position and extent in Muller-Lyer figures. Perception and Psychophysics 37:335–44. [aSG]Google Scholar
Magne, P. & Coello, Y. (2002) Retinal and extra-retinal contribution to position coding. Behavioural Brain Research 136:277–87. [YC, rSG]Google Scholar
Maratos, O. (1982) Trends in the development of imitation in early infancy. In: Regressions in mental development: Basic phenomena and theories, pp. 81101, ed. Bever, T. G. Erlbaum. [MRL]Google Scholar
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S. & Dugas, C. (1987) Constraints on human arm movement trajectories. Canadian Journal of Psychology 41:365–78. [MG, aSG]Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 379:649–52. [MG]Google Scholar
Massey, J. T. Schwartz, A. B. & Georgopoulos, A. P. (1986) On information processing and performing movement sequence. Experimental Brain Research Supplement 15:242–51. [VG]Google Scholar
Matsuzawa, T. (1985) Use of numbers by a chimpanzee. Nature 315:5759.Google Scholar
Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. (1998) Motor role of human inferior parietal lobule revealed in unilateral neglect patients. Nature 392:179–82. [aSG]Google Scholar
Mattingley, J. B., Phillips, J. & Bradshaw, J. (1994) Impairments in movement execution in unilateral neglect: A kinematic analysis of directional bradykinesia. Neuropsychologia 32:1111–34. [aSG]Google Scholar
McGraw, M. B. (1941) Neural maturation as exemplified in the reachingprehensile behavior of the human infant. Journal of Psychology 11:127–41. [MRL]Google Scholar
Meegan, D. V., Glazebrook, C. M., Dhillon, V. P., Tremblay, L., Welsh, T. N. & Elliott, D. (in press) The Muller-Lyer illusion affects the planning and control of manual aiming movements. Experimental Brain Research. [DE]Google Scholar
Meltzoff, A. N. & Moore, M. K. (1977) Imitation of facial and manual gestures by human neonates. Science 198:7578. [MRL]Google Scholar
Merikle, P. M., Smilek, D. & Eastwood, J. D. (2001) Perception without awareness: Perspectives from cognitive psychology. Cognition 79:115–34. [AR]Google Scholar
Mesulam, M.-M. (1985) Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Principles of behavioral neurology, ed. Mesulam, M.-M. , pp. 170. F. A. Davis. [RL]Google Scholar
Mesulam, M.-M. (1989) Behavioral neuroanatomy of cholinergic innervation in the primate cerebral cortex. Experientia Supplementa 57:111. [RL]Google Scholar
Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Smith, K. (1988) Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95(3):340–70. [VG, aSG, PR]Google Scholar
Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. (1993) Is the cerebellum a Smith predictor? Journal of Motor Behavior 25(3):203–16. [PR]Google Scholar
Miller, J. (1982) Discrete versus continuous models of human information processing: In search of partial output. Journal of Experimental Psychology: Human Perception and Performance 8:273–96. [JJA]Google Scholar
Milner, A. D. & Dijkerman, H. C. (2001) Direct and indirect visual routes to action. In: Out of mind: Varieties of unconscious processes, ed. Gelder, B. D., Haan, E. D. & Heywood, C. A., pp. 241–64. Oxford University Press. [YC]Google Scholar
Milner, A. D., Dijkerman, H. C., McIntosh, R. D., Rossetti, Y. & Pisella, L. (2003) Delayed reaching and grasping in patients with optic ataxia. Progress in Brain Research 142:225–42. [MAG, rSG]Google Scholar
Milner, A. D., Dijkerman, H. C., Pisella, L., McIntosh, R. D., Tilikete, C., Vighetto, A. & Rossetti, Y. (2001) Grasping the past: Delay can improve visuomotor performance. Current Biology 11:18961901. [aSG]Google Scholar
Milner, A. D. & Goodale, M. A. (1993) Visual pathways to perception and action. Progress in Brain Research 95:317–37. [DEV]Google Scholar
Milner, A. D. & Goodale, M. A. (1995) The visual brain in action. Oxford University Press. [YC, JSD, VHF, MAG, arSG, RN, JGP, PR, LCLS, PMV, CEW]Google Scholar
Milner, A. D., Perreti, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., Bettucci, D., Mortara, F., Mutani, R., Terazzi, E. & Davidson, D. L. W. (1991) Perception and action in “visual form agnosia.” Brain 114:405–28. [MAG, aSG]Google Scholar
Milner, T. E. (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49(2):487–96. [VG]Google Scholar
Mishkin, M., Ungerleider, L. & Macko, K. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–17. [aSG]Google Scholar
Moll, J., de Oliveira-Souza, R., Passman, L. J., Cunha, F. C., Souza-Lima, F. & Andreiuolo, P. A. (2000) Functional MRI correlates of real and imagined tooluse pantomimes. Neurology 54(6):1331–36. [SHJ-F]Google Scholar
Mon-Williams, M., Tresilian, J. R., McIntosh, R. D. & Milner, A. D. (2001) Monocular and binocular distance cues: Insight from visual form agnosia I (of III). Experimental Brain Research 139:127–36. [YC]Google Scholar
Mountcastle, V. B., Lynch, J., Georgopolous, A., Sakata, H. & Acuna, C. (1975) Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. Journal of Neurophysiology 38:871908. [aSG, MZ]Google Scholar
Murata, A., Gallese, V., Kaseda, M. & Sakata, H. (1996) Parietal neurons related to memory-guided hand manipulation. Journal of Neurophysiology 75:2180–85. [aSG]Google Scholar
Mushiake, H. & Strick, P. L. (1995) Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology 74(6):2754–58. [DEV]Google Scholar
Newman, C., Atkinson, J. & Braddick, O. (2001) The development of reaching and looking preferences in infants to objects of different sizes. Developmental Psychology 37:561–72. [JSD]Google Scholar
Nobre, A. C., Sebestyen, G., Gitelman, D., Mesulam, M., Frackowiak, R. & Frith, C. (1997) Functional localization of the neural network for visual spatial attention by positron emission tomography. Brain 120:515–33. [arSG]Google Scholar
Norman, J. (2002) Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences 25:73144. [AR]Google Scholar
Novak, K. E., Miller, L. E. & Houk, J. C. (2002) The use of overlapping submovements in the control of rapid hand movements. Experimental Brain Research 144(3):351–64. [VG]Google Scholar
Nowak, D. A. & Hermsdorfer, J. (2003) Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neuroscience Research 47:6572. [rSG]Google Scholar
Ohshiba, N. (1997) Memorization of serial items by Japanese monkeys, a chimpanzee, and humans. Japanese Psychological Research 39:236–52. [NK]Google Scholar
Otto-de Haart, E. G., Carey, D. P., & Milne, A. B. (1999). More thoughts on perceiving and grasping the Muller-Lyer illusion. Neuropsychologia 37:1437–44. [aSG]Google Scholar
Paillard, J. (1987) Cognitive versus sensorimotor encoding of spatial information. In: Cognitive processes and spatial orientation in animal and man, ed. Ellen, P. & Thinus-Blanc, C. Martinus Nijhoff. [BB, YC]Google Scholar
Paillard, J. & Brouchon, M. (1968) Active and passive movements in the calibration of position sense. In: The neuropsychology of spatially oriented behavior, ed. Freedman, S. J. Dorsey Press. [aSG]Google Scholar
Passingham, R. E. (1993) The frontal lobes and voluntary action. Oxford University Press. [MRL]Google Scholar
Paulignan, Y., Jeannerod, M., MacKenzie, C. L.& Marteniuk, R. (1991a) Selective perturbation of visual input during prehension movements. II. The effects of changing object size. Experimental Brain Research 87(2):407–20. [arSG, VG]Google Scholar
Paulignan, Y., MacKenzie, C. L., Marteniuk, R. & Jeannerod, M. (1991b) Selective perturbation of visual input during prehension movements. I. The effects of changing object position. Experimental Brain Research 83:502–12. [MG, aSG]Google Scholar
Pavani, F., Boscagli, I., Benvenuti, F., Rabuffetti, M. & Farne, A. (1999) Are perception and action affected differently by the Titchener circles illusion? Experimental Brain Research 127:95101. [arSG]Google Scholar
Pegna, A. J., Petit, L., Caldara-Schnetzer, A. S., Khateb, A., Annoni, J. M., Sztajzel, R. & Landis, T. (2001) So near yet so far: Neglect in far or near space depends on tool use. Annals of Neurology 50(6):820–22. [RL]Google Scholar
Pelisson, D., Prablanc, C., Goodale, M. A. & Jeannerod, M. (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double step stimulus. Experimental Brain Research 62:303–11. [PR]Google Scholar
Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T. & McCarthy, G. (2003) Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience 23:6819–25. [rSG]Google Scholar
Perenin, M. T. & Vighetto, A. (1983) Optic ataxia: A specific disorder in visuomotor coordination. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M. Springer-Verlag. [arSG]Google Scholar
Perenin, M. T. & Vighetto, A. (1988) Optic ataxia: A specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111(Pt. 3):643–74. [MAG, arSG, SHJ-F]Google Scholar
Petitot, J. (1995) Morphodynamics and attractor syntax: Constituency in visual perception and cognitive grammar. In: Mind as motion: Explorations in the dynamics of cognition, ed. Port, R. F. & Van Gelder, T., pp. 227–83. MIT Press. [AR]Google Scholar
Phillips, J. G., Triggs, T. J. & Meehan, J. W. (2003) Conflicting directional and locational cues afforded by arrowhead cursors in graphical user interfaces. Journal of Experimental Psychology: Applied 9:7587. [JGP]Google Scholar
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D. & Rossetti, Y. (2000) An “automatic pilot” for the hand in human posterior parietal cortex: Towards reinterpreting optic ataxia. Nature Neuroscience 3(7):729–36. [YC, MAG, arSG, VG]Google Scholar
Plamondon, R. (1995) A kinematic theory of rapid human movements. Part I. Movement representation and generation. Biological Cybernetics 72:295307. [GB]Google Scholar
Plamondon, R. & Alimi, A. M. (1997) Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences 20:279303. [aSG]Google Scholar
Poizner, H., Clark, M., Merians, A., Macauley, B., Gonzalez Rothi, L. & Heilman, K. M. (1995) Joint coordination deficits in limb apraxia. Brain 118:227–42. [aSG]Google Scholar
Poizner, H., Mack, L., Verfaellie, M., Gonzalez Rothi, L. & Heilman, K. M. (1990) Three-dimensional computergraphic analysis of apraxia. Brain 113:85101. [aSG]Google Scholar
Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N., Muller, K., Lohmann, G., Wiggins, C. J. & Watson, D. G. (2003) Separating distractor rejection and target detection in posterior parietal cortex – an event-related fMRI study of visual marking. NeuroImage 18:310–23. [rSG]Google Scholar
Prablanc, C., Desmurget, M. & Grea, H. (2003) Neural control of on-line guidance of hand reaching movements. Progress in Brain Research 142:155–70. [PR]Google Scholar
Prablanc, C. & Martin, O. (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology 67:455–69. [arSG, PR]Google Scholar
Proteau, L. & Masson, G. (1997) Visual perception modifies goal-directed movement control: Supporting evidence from a visual perturbation paradigm. The Quarterly Journal of Experimental Psychology 50A:726–41. [DE]Google Scholar
Pylyshyn, Z. & Storm, R. W. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:178–97. [AR]Google Scholar
Raftopoulos, A. (2001) Is perception informationally encapsulated? The issue of the theory-ladenness of perception. Cognitive Science 25:423–51. [AR]Google Scholar
Raymer, A. M., Merians, A. S., Adair, J. C., Schwartz, R. L., Williamson, D. J., Rothi, L. J., Poizner, H. & Heilman, K. M. (1999) Crossed apraxia: Implications for handedness. Cortex 35(2):183–99. [SHJ-F]Google Scholar
Reuter-Lorenz, P. A. & Posner, M. I. (1990) Components of neglect from righthemisphere damage: An analysis of line bisection. Neuropsychologia 28:327–33. [aSG]Google Scholar
Revol, P., Gaveau, V., Desmurget, M., Rossetti, Y. & Prablanc, C. (2003) The quick visual guidance of hand pointing and internal models. Poster presented at the International Brain Research Organisation Congress, Prague, July 10–15, 2003. [PR]Google Scholar
Revol, P., & Honore, J. (in preparation) Impact of optokinetic stimulations on perception and action: Evidence for a dissociation within the action systems. [PR]Google Scholar
Rizzolatti, G. & Arbib, M. A. (1998) Language within our grasp. Trends in Neurosciences 21:188–94. [aSG]Google Scholar
Rizzolatti, G., & Berti, A. (1990) Neglect as a neural representation deficit. Revue Neurologique 146:626–34. [rSG]Google Scholar
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G. & Matelli, M. (1988) Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Experimental Brain Research 71:491507. [MRL]Google Scholar
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D. & Fazio, F. (1996) Localization of grasp representations in humans by PET: I. Observation versus execution. Experimental Brain Research 111:246–52. [aSG]Google Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Review Neuroscience 2:661–70. [MG]Google Scholar
Rizzolatti, G., Matelli, M. & Pavesi, G. (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 106:655–73. [rSG]Google Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P. Pergamon Press. [PR]Google Scholar
Rosenbaum, D. A. (1980) Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General 109:444–74. [rSG]Google Scholar
Rosenbaum, D. A. (1991) Human movement control. Academic Press. [aSG]Google Scholar
Rosenbaum, D. A. Loukopoulos, L., Meulenbroek, R., Vaughan, J. & Engelbrecht, S. (1995) Planning reaches by evaluating stored postures. Psychological Review 102:2867. [aSG]Google Scholar
Rosenbaum, D. A., Marchak, F., Barnes, J., Vaughan, J., Slotta, J. & Jorgensen, M. (1990) Constraints for action selection: Overhand versus underhand grips. In: Attention and performance XIII, ed. Jeannerod, M. Erlbaum. [aSG]Google Scholar
Rosenbaum, D. A., Vaughn, J., Barnes, H. & Jorgensen, M. (1992) Time course of movement planning: Selection of handgrips for object manipulation. In: Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, ed. Meyer, D. E. & Kornblum, S. MIT Press. [aSG]Google Scholar
Rossetti, Y. (1998) Implicit short-lived motor representation of space in braindamaged and healthy subjects. Consciousness and Cognition 7:520–58. [YC]Google Scholar
Rossetti, Y. & Pisella, L. (2002) Several “vision for action” systems: A guide to dissociating and integrating dorsal and ventral functions. In: Attention and performance XIX: Common mechanisms in perception and action, ed. Prinz, W. & Hommel, B., pp. 62119. Oxford University Press. [PR, YC]Google Scholar
Rossetti, Y., Pisella, L. & Pelisson, Y. (2000) Eye blindness and hand sight: Temporal aspects of visuo-motor processing. Visual Cognition 7(6):785808. [YC]Google Scholar
Rossetti, Y., Pisella, L. & Vighetto, A. (2003) Optic ataxia revisited: Visually guided action versus immediate visuomotor control. Experimental Brain Research. 153:171–79. [YC, rSG]Google Scholar
Rossetti, Y., Stelmach, G. E., Desmurget, M., Prablanc, C. & Jeannerod M. (1994) The effect of viewing the static hand prior to movement onset on pointing kinematics and accuracy. Experimental Brain Research 101:323–30. [YC]Google Scholar
Rothi, L. J. G., Mack, L. & Heilman, K. M. (1986) Pantomime agnosia. Journal of Neurology, Neurosurgery, and Psychiatry 49:451–54. [MRL]Google Scholar
Rothi, L. J. G., Ochipa, C. & Heilman, K. M. (1991) A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology 8(6):443–58. [MRL]Google Scholar
Roy, A. C., Pavesi, G., Stefanini, S. & Gentilucci, M. (in press) Early movement impairments in a patient recovering from optic ataxia. Neuropsychologia. [MG]Google Scholar
Rushworth, M. F., Ellison, A. & Walsh, V. (2001a) Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience 4:656–61. [aSG]Google Scholar
Rushworth, M. F., Krams, M. & Passingham, R. E. (2001b) The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience 13:698710. [aSG]Google Scholar
Rushworth, M. F., Nixon, P. & Passingham, R. (1997a) Parietal cortex and movement. I. Movement selection and reaching. Experimental Brain Research 117:292310. [rSG]Google Scholar
Rushworth, M. F., Nixon, P., Renowden, S., Wade, D. & Passingham, R. E. (1997b) The left parietal cortex and attention to action. Neuropsychologia 35:1261–73. [aSG]Google Scholar
Sainburg, R. L., Poizner, H. & Ghez, C. (1993) Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology 70:2136–47. [arSG]Google Scholar
Sakata, H., Taira, M., Kusunoki, M., Murata, A., & Tanaka, Y. (1997) The parietal association cortex in depth perception and visual control of hand action. Trends in Neurosciences 20:350–57. [aSG]Google Scholar
Savelsbergh, G. J., Whiting, H. & Bootsma, R. (1991) Grasping tau. Journal of Experimental Psychology: Human Perception and Performance 17:315–22. [aSG]Google Scholar
Schneider, G. E. (1969) Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science 163:895902. [VHF, RL]Google Scholar
Scholl, B. J. (2001) Objects and attention: The state of the art. Cognition 80:146. [AR]Google Scholar
Scholl, B. J. & Leslie, A. M. (1999) Explaining the infant's object concept: Beyond the perception/cognition dichotomy. In: What is cognitive science?, ed. Lepore, E. & Pylyshyn, Z., pp. 2674. Blackwell. [AR]Google Scholar
Schwoebel, J. & Coslett, H. B. (2002) The man who executed “imagined” movements. Brain and Cognition 50:116. [HBC]Google Scholar
Schwoebel, J. C.slett, H. B. & Buxbaum, L. J. (2001) Compensatory coding of body part location in autotopagnosia: Evidence for extrinsic egocentric coding. Cognitive Neuropsychology 18:363–81. [HBC]Google Scholar
Sereno, M. I., Pitzalis, S. & Martinez, A. (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–54. [SHJ-F]Google Scholar
Servos, P. (2000) The visuomotor system resists the horizontal-vertical illusion. Journal of Motor Behavior 32:400404. [aSG]Google Scholar
Shallice, T. (1988) From neuropsychology to mental structure. Cambridge University Press. [VCR]Google Scholar
Shallice, T. & Burgess, P. W. (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114:727–41. [rSG]Google Scholar
Short, M. W. & Cauraugh, J. (1997) Planning macroscopic aspects of manual control: End-state comfort and point-of-change effects. Acta Psychologica 96:133–47. [aSG]Google Scholar
Silveira, L. C. L. & de Mello, H. D. Jr. (1998) Parallel pathways of the primate vision: Sampling of the information in the Fourier space by M and P cells. In: Development and organization of the retina: From molecules to function, ed. Chalupa, L. M. & Finlay, B. L. Plenum Press. [LCLS]Google Scholar
Silveira, L. C. L., Saito, C. A., Lee, B. B., Kremers, J., da Silva Filho, M., Kilavik, B. E., Yamada, E. S. & Perry, V. H. (2003) Morphology and physiology of primate M and P cells. In: The root of visual awareness, progress in brain research, ed. Milner, A. D., Blakemore, C. & Heywood, C. A. Elsevier Science. [LCLS]Google Scholar
Sirigu, A., Duhamel, J.-R., Cohen, L., Pillon, B., Dubois, B. & Agid, Y. (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–68. [HBC]Google Scholar
Slifkin, A. B., Vaillancourt, D. E. & Newell, K. M. (2000) Intermittency in the control of continuous force production. Journal of Neurophysiology 84(4):1708–18. [DEV]Google Scholar
Smeets, J. B. J. & Brenner, E. (1995a) Perception and action are based on the same visual information: Distinction between position and velocity. Journal of Experimental Psychology: Human Perception and Performance 21:1931. [aSG]Google Scholar
Smeets, J. B. J. & Brenner, E. (1995b) Prediction of a moving target's position in fast goal-directed action. Biological Cybernetics 73:519–28. [A-MB]Google Scholar
Smeets, J. B. J. & Brenner, E. (1999) A new view on grasping. Motor Control 3:237–71. [A-MB]Google Scholar
Smeets, J. B. J. & Brenner, E. (2001) Independent movements of the digits in grasping. Experimental Brain Research 139:92100. [A-MB]Google Scholar
Smeets, J. B. J., Brenner, E., de Grave, D. D. J. & Cuijpers, R. H. (2002) Illusions in action: Consequences of inconsistent processing of spatial attributes. Experimental Brain Research 147:135–44. [A-MB, rSG]Google Scholar
Smeets, J. B., Erkelens, C. & van der Gon, J. (1990) Adjustments of fast goal-directed movements in response to an unexpected inertial load. Experimental Brain Research 81:302–12. [aSG]Google Scholar
Smeets, J. B. J., Glover, S. & Brenner, E. (2003) Modeling the time-dependent effect of the Ebbinghaus illusion on grasping. Spatial Vision 16:311–24. [AMB, rSG]Google Scholar
Smith, M. A., Brandt, J. & Shadmehr, R. (2000) Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403(6769):544–49. [rSG, VG]Google Scholar
Snyder, L. H., Batista, A. P. & Andersen, R. A.(1997) Coding of intention in the posterior parietal cortex. Nature 386(6621):167–70. [MAG, aSG, MZ]Google Scholar
Snyder, L. H., Batista, A. P. & Andersen, R. A. (1998) Change in motor plan, without a change in the spatial locus of attention, modulates activation in posterior parietal cortex. Journal of Neurophysiology 79:2814–19. [aSG]Google Scholar
Soechting, J. F. & Lacquaniti, F. (1983) Modification in trajectory of a pointing movement in response to a change in target location. Journal of Neurophysiology 49:548–64. [aSG, PR]Google Scholar
Stark, L. (1968) Neurological control systems: Studies in bioengineering. Plenum Press. [aSG]Google Scholar
Stein, J. F. (1986) Role of the cerebellum in the visual guidance of movement. Nature 323:217–21. [aSG]Google Scholar
Stein, J. F. (1991) Space and the parietal association areas. In: Brain and space, ed. Paillard, J. Oxford University Press. [aSG]Google Scholar
Stein, J. F. (1992) The representation of egocentric space in the posterior parietal cortex. Behavioral and Brain Sciences 15:691700. [aSG]Google Scholar
Stelmach, G. E., Castiello, U. & Jeannerod, M. (1994) Orienting the finger opposition space during prehension movements. Journal of Motor Behavior 26:178–86. [aSG]Google Scholar
Stengel, E. (1947) A clinical and psychological study of echo-reactions. Journal of Mental Science 93:598612. [MRL]Google Scholar
Szameitat, A. J., Schubert, T., Muller, K. & Von Cramon, D. Y. (2003) Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience 14:1184–99. [rSG]Google Scholar
Taira, M., Mine, S., Georgopolous, A. P., Murata, A. & Sakata, H. (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Experimental Brain Research 83:2936. [MAG, arSG]Google Scholar
Tanne, J., Boussaoud, D., Boyer-Zeller, N. & Rouiller, E. M. (1995) Direct visual pathways for reaching movements in the macaque monkey. NeuroReport 7:267–72. [MZ]Google Scholar
Teuber, H.-L. (1955) Physiological psychology. Annual Review of Psychology 6:267–96. [RL]Google Scholar
Tootell, R. B. H., Tsao, D. & Vanduffel, W. (2003) Neuroimaging weighs in: Humans meet macaques in “primate” visual cortex. Journal of Neuroscience 23:3981–89. [rSG]Google Scholar
Trevarthen, C. B. (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299337. [VHF]Google Scholar
Tsutsui, K., Jiang, M., Sakata, H. & Taira, M. (2003) Short-term memory and perceptual decision for three-dimensional visual features in the caudal intraprietal sulcus (Area CIP). Journal of Neuroscience 23:5486–95. [rSG]Google Scholar
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, W. R. J., pp. 549–86. MIT Press. [VHF, RL, LCLS, CEW]Google Scholar
Uttal, W. R. (1998) Toward a new behaviorism: The case against perceptual reductionism. Erlbaum. [VCR]Google Scholar
Uttal, W. R. (2000) The war between mentalism and behaviorism: On the accessibility and analyzability of mental process. Erlbaum. [VCR]Google Scholar
Vaillancourt, D. E. & Russell, D. M. (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Experimental Brain Research 145(3):275–85. [DEV]Google Scholar
Vaillancourt, D. E., Slifkin, A. B. & Newell, K. M. (2001) Intermittency in the visual control of force in Parkinson's disease. Experimental Brain Research 138(1):118–27. [DEV]Google Scholar
Vaillancourt, D. E., Thulborn, K. R. & Corcos, D. M. (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. Journal of Neurophysiology 90:903–12. [DEV]Google Scholar
Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J. T. & Orban, G. A. (2002) Extracting 3D from motion: Differences in human and monkey intraparietal cortex. Science 298:413–15. [aSG]Google Scholar
van Donkelaar, P. (1999) Pointing movements are affected by size-contrast illusions. Experimental Brain Research 125:517–20. [DE, aSG, ZK, PvD]Google Scholar
van Donkelaar, P. (1999) Size-contrast illusions influence pointing movements. Experimental Brain Research 125:517–20. [PvD]Google Scholar
Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B. H., Bakircioglu, M. & Miller, M. I. (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research 41:1359–78. [rSG]Google Scholar
Van Orden, G. C., Pennington, B. F. & Stone, G. O. (2001) What do double dissociations prove? Cognitive Science 25:111–72. [VCR]Google Scholar
van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, L., Suzuki, A., Utami, S. S. & Merrill, M. (2003) Orangutan cultures and the evolution of material culture. Science 299:102105. [NK]Google Scholar
Vince, M. A. (1948) Corrective movements in a pursuit task. Quarterly Journal of Experimental Psychology 1:85106. [aSG]Google Scholar
Vishton, P. (2003) Infant gestalt perception and object-directed reaching: Effects of shape, color, and remembered spatiotemporal information. Paper presented at the meeting of the Society for Research in Child Development, Tampa, FL, April 2003. [JSD]Google Scholar
Vishton, P. M. & Fabre, E. (2003) Effects of the Ebbinghaus illusion on different behaviors: One- and two-handed grasping; one- and two-handed manual estimation; metric and comparative judgment. Spatial Vision 16:377–92. [PMV]Google Scholar
Vishton, P. M., Ferriman, K. A. & Sands, A. G. (submitted) Effects of the horizontal-vertical illusion on different “perception” and “action” behaviors: Two- and three-finger gripping and manual estimation; metric and comparative judgment. [PMV]Google Scholar
Vishton, P. M., Rea, J. C., Cutting, J. & Nunez, L. N. (1999) Comparing effects of the horizontal-vertical illusion on grip scaling and judgment: Relative versus absolute, not perception versus action. Journal of Experimental Psychology: Human Perception and Performance 25:1659–72. [arSG, PMV]Google Scholar
von Helmholtz, H. (1866) Handbuch des physiologischen Optik. Vos. [aSG]Google Scholar
Von Hofsten, C., Vishton, P. M., Spelke, E. S., Feng, Q. & Rosander, K. (1998) Predictive action in infancy: Tracking and reaching for moving objects. Cognition 67:255–85. [JSD]Google Scholar
Wallace, S. A. & Newell, K. (1983) Visual control of discrete aiming movements. Quarterly Journal of Experimental Psychology 35A:311–21. [aSG]Google Scholar
Walsh, V. & Rushworth, M. F. (1999) A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37:125–35. [aSG]Google Scholar
Weldon, M. S. (1999) The memory chop shop: Issues in the search for memory systems. In: Memory systems, processes, or functions? ed. Foster, J. K. & Jelicic, M. Oxford University Press. [VCR]Google Scholar
Westwood, D. A., Chapman, C. D. & Roy, E. A. (2000a) Pantomimed movements are controlled by the ventral visual stream. Experimental Brain Research 130:545–48. [aSG]Google Scholar
Westwood, D. A., Dubrowski, A., Carnahan, H. & Roy, E. A. (2000b) The effect of illusory size on force production when grasping objects. Experimental Brain Research 135:535–43. [aSG, DAW]Google Scholar
Westwood, D. A. & Goodale, M. A. (2003) Perceptual illusion and the real-time control of action. Spatial Vision 16:243–54. [DAW]Google Scholar
Westwood, D. A., Heath, M. & Roy, E. A. (2000c) The effect of a pictorial illusion on closed-loop and open-loop prehension. Experimental Brain Research 134:456–63. [GB, A-MB, arSG]Google Scholar
Westwood, D. A., Heath, M. & Roy, E. A. (2001a) The accuracy of reaching movements in brief delay conditions. Canadian Journal of Experimental Psychology 55:304–10. [GB, arSG]Google Scholar
Westwood, D. A., Heath, M. & Roy, E. A. (2003) No evidence for accurate visuomotor memory: Systematic and variable error in memory-guided reaching, Journal of Motor Behavior 35(2):127–33. [GB]Google Scholar
Westwood, D. A., McEachern, T. & Roy, E. A. (2001b) Delayed grasping of a Muller-Lyer figure. Experimental Brain Research 141:166–73. [A-MB, aSG]Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E. G., Wrangham, R. W. & Boesch, C. (1999) Cultures in chimpanzees. Nature 399:682–85. [NK]Google Scholar
Wichmann, T. & DeLong, M. R. (1996) Functional and pathphysiological models of the basal ganglia. Current Opinion in Neurobiology 6:751–58. [DEV]Google Scholar
Wing, A. M. & Fraser, C. (1983) The contribution of the thumb to reaching movements. Quarterly Journal of Experimental Psychology 35A:279309. [rSG]Google Scholar
Wing, A. M., Turton, A. & Fraser, C. (1986) Grasp size and accuracy of approach in reaching. Journal of Motor Behavior 18:245–60. [rSG]Google Scholar
Wise, S. P. & Desimone, R. (1988) Behavioral neurophysiology: Insights into seeing and grasping. Science 242:736–41. [aSG]Google Scholar
Wise, S. P., Driss, B., Johnson, P. B. & Caminiti, R. (1997) Premotor and parietal cortex: Corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience 20:2542. [VCR]Google Scholar
Wolpert, D. M. & Ghahramani, Z. (2000) Computational principles of movement neuroscience. Nature Neuroscience (Supplement) 3:1212–17. [aSG, RN]Google Scholar
Wolpert, D. M., Ghahramani, Z. & Jordan, M. (1995) An internal model for sensorimotor integration. Science 269:1880–82. [aSG]Google Scholar
Woodworth, R. S. (1899) The accuracy of voluntary movements. Psychological Review Monograph 3 (Suppl. 3, No. 13):1119. [YC, DE, aSG, PR, DEV, CEW]Google Scholar
Wong, E. & Mack, A. (1981) Saccadic programming and perceived location. Acta Psychologica 48:123–31. [aSG]Google Scholar
Wright, C. E., Chubb, C., Kim, P. & Anderson, S. (submitted) The relative sensitivities to chromaticity and luminance of the “what” and “how” systems. [CEW]Google Scholar
Yoshioka, T., Levitt, J. B. & Lund, J. S. (1994) Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections. Visual Neuroscience 11:467–89. [LCLS]Google Scholar
Zeki, S. M. (1978) Functional specialisation in the visual cortex of the rhesus monkey. Nature 274:423–28. [RL]Google Scholar
Zeki, S. M. (1993) A vision of the brain. Blackwell: Oxford. [rSG]Google Scholar
Zeki, S. M. (2003) Improbable areas in the visual brain. Trends in Neurosciences 26:2326. [rSG]Google Scholar
Zelaznik, H. N., Hawkins, B. & Kisselburgh, L. (1983) Rapid visual feedback processing in single-aiming movements. Journal of Motor Behavior 15:217–36. [aSG]Google Scholar
Zigmond, M. J., Bloom, F., Landis, S., Roberts, J. & Squire, L. (1999) Fundamental neuroscience. Academic Press. [aSG]Google Scholar