Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:41:19.209Z Has data issue: false hasContentIssue false

Neuronal deactivation is equally important for understanding emotional processing

Published online by Cambridge University Press:  23 May 2012

Jacob M. Vigil
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, NM 87131-1161. [email protected]://www.unm.edu/~psych/faculty/[email protected]@unm.edu
Amber Dukes
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, NM 87131-1161. [email protected]://www.unm.edu/~psych/faculty/[email protected]@unm.edu
Patrick Coulombe
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, NM 87131-1161. [email protected]://www.unm.edu/~psych/faculty/[email protected]@unm.edu

Abstract

In their analyses of the neural correlates of discrete emotionality, Lindquist et al. do not consider the numerous drawbacks to inferring psychological processes based on currently available cognitive neurometric technology. The authors also disproportionately emphasize the relevance of neuronal activation over deactivation, which, in our opinion, limits the scope and utility of their conclusions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Tranel, D. & Damasio, A. R. (1998) The human amygdala in social judgment. Nature 393:470–73.CrossRefGoogle ScholarPubMed
Amunts, K., Weiss, P. H., Mohlberg, H., Pieperhoff, P., Eickhoff, S., Gurd, J. M., Marshall, J. C., Shah, N. J., Fink, G. R. & Zilles, K. (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – the roles of Brodmann areas 44 and 45. Neuroimage 22:4256.CrossRefGoogle ScholarPubMed
Barrett, H. C. (2005) Enzymatic computation and cognitive modularity. Mind and Language 20:259–87.CrossRefGoogle Scholar
Barrett, H. C. & Kurzban, R., (2006) Modularity in cognition: Framing the debate. Psychological Review 113:628–47.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Gardner, W. L. & Berntson, G. G. (1999) The affect system has parallel and integrative processing components: Form follows function. Journal of Personality and Social Psychology 76(5):839–55.CrossRefGoogle Scholar
Davidson, R. J. (1998) Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion 12:307–30.CrossRefGoogle Scholar
Davidson, R. J. & Irvin, W. (1999) The functional neuroanatomny of emotion and affective style. Trends in Cognitive Sciences 3:1121.CrossRefGoogle Scholar
Drevets, W. C. & Raichle, M. E. (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications of interactions between emotion and cognition and emotion. Cognition and Emotion 12:353–85.CrossRefGoogle Scholar
Engell, A. D., Haxby, J. V. & Todorov, A. (2007) Implicit trustworthiness decisions: Automatic coding of face properties in the human amygdala. Journal of Cognitive Neuroscience 19:1508–19.CrossRefGoogle ScholarPubMed
Fiske, S. T., Cuddy, A. J. C. & Glick, P. (2006) Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences 11:7783.CrossRefGoogle ScholarPubMed
Gray, J. A. (1994) Three fundamental emotion systems. In: The nature of emotion: Fundamental questions, ed. Ekman, P. & Davidson, R. J., pp. 243–47. Oxford University Press.Google Scholar
Hagen, E. H. (2005) Controversial issues in evolutionary psychology. In: The handbook of evolutionary psychology, ed. Buss, D. M., pp. 145–73. John Wiley.Google Scholar
Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (1990) Emotion, attention, and the startle reflex. Psychology Review 97:377–98.CrossRefGoogle ScholarPubMed
Laurienti, P. J., Burdette, J. H., Wallace, M. T., Yen, Y. F., Field, A. S. & Stein, B. E. (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. Journal of Cognitive Neuroscience 14:420–29.CrossRefGoogle ScholarPubMed
Lewis, J. W., Beauchamp, M. S. & DeYeo, E. A. (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cerebral Cortex 10:873–88.CrossRefGoogle ScholarPubMed
Marshall, J. F. (1984) Brain function: Neural adaptations and recovery from injury. Annual Review of Psychology 35:277308.CrossRefGoogle ScholarPubMed
Niedenthal, P. M., Mermillod, M., Maringer, M. & Hess, U. (2010) The simulation of smiles (SIMS) model: Embodied simulation and the meaning of facial expression. Behavioral and Brain Sciences 33:417–80.CrossRefGoogle ScholarPubMed
Paus, T., Koski, L., Caramanos, Z. & Westbury, C. (1998) Regional differences in the effects of task difficulty and motor output on blood flow responses in the human anterior cingulated cortex: A review of 107 PET activation studies. NeuroReport 9:3747.CrossRefGoogle ScholarPubMed
Pouratian, N., Sheth, S. A., Martine, N. A. & Toga, A. W. (2003) Shedding light on brain mapping: Advances in human optical imaging. Trends in Neurosciences 26:277–82.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences USA 98:676–82. Available at: http://www.pnas.org/content/98/2/676.long.CrossRefGoogle ScholarPubMed
Robertson, I. H. & Murre, J. M. J. (1999) Rehabilitation of brain damage: Brain plasticity and principles of guided recovery. Psychological Bulletin 125:544–75.CrossRefGoogle ScholarPubMed
Rorden, C. & Karnath, H. (2004) Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews 5:813–19.CrossRefGoogle ScholarPubMed
Rosenberg, S., Nelson, C. & Vivekananthan, P. (1968) A multidimensional approach to the structure of personality impressions. Journal of Personality and Social Psychology 9:283–94.CrossRefGoogle Scholar
Todorov, A. (2008) Evaluating faces on trustworthiness: An extension of systems for recognition of emotions signaling approach/avoidance behaviors. Annuals of the New York Academy of Sciences 1124:208–24.CrossRefGoogle ScholarPubMed
Tomasi, D., Ernst, T., Caparelli, E. C. & Change, L. (2006) Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla. Human Brain Mapping 27:694705.CrossRefGoogle Scholar
Vigil, J. M. (2009) A socio-relational framework of sex differences in the expression of emotion. Behavioral and Brain Sciences 32:375428.CrossRefGoogle ScholarPubMed
Vigil, J. M. & Coulombe, P. (2010) Embodied simulation and the search for meaning are not necessary for facial expression processing. Behavioral and Brain Sciences 33:461–62.CrossRefGoogle Scholar
Winston, J. S., Strange, B. A., O'Doherty, J. & Dolan, R. J. (2002) Automatic and intentional brain response during evaluation of trustworthiness of faces. Nature 5:277–83.Google ScholarPubMed
Wojciszke, B. (2005) Morality and competence in person and self perception. European Review of Social Psychology 16:155–88.CrossRefGoogle Scholar
Zald, D. H. (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews 41:88123.CrossRefGoogle ScholarPubMed