Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T21:25:19.778Z Has data issue: false hasContentIssue false

Multiple representations of space underlying behavior

Published online by Cambridge University Press:  04 February 2010

Israel Lieblich
Affiliation:
Department of Psychology, Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
Michael A. Arbib
Affiliation:
Department of Computer and Information Science, Center for Systems Neuroscience, University of Massachusetts, Amherst, Mass. 01003

Abstract

We argue that a map is meaningless unless we have a process for using it. Thus, in this paper, we not only offer the world graph as a representation of relationships among situations the animal has encountered and may encounter again, but we also offer algorithms for how the information encoded in the world graph may be used by the animal in determining its behavior. Each node of the graph encodes a recognizable situation in the animal's world, but a given place may well be encoded in a number of different nodes. Nodes not only require algorithms for the recognition of the situation; they store information about drive reduction associated with the encoded situation. We note that the use of graphs as a basis for exploring some search space is well known in artificial intelligence (AI), but we stress the importance of the animal's exploration of its environment for growing the graph, as distinct from the mathematically described potential nodes frequent in AI search spaces. To explore a number of hypotheses about the way information in the world graph is used to guide the animal's movement, we recall a number of classical experiments on maze exploration by animals, and use them to argue for the nonlocal hypothesis (selection of a path does not depend only upon information about the immediate environment of the animal) and the competing nodes hypothesis (more than one drive may enter into the determination of the animal's behavior at any time). An important feature of the model is that it yields exploration and latent learning without the introduction of an exploratory drive. We also note that the performance exhibited by the model appears to be state-dependent when the animal operates under high drive levels. The drive-interaction matrix is offered as a subject for future research.

We complement the presentation of the world graph model, its drive dynamics, and how these are constrained by experiments on maze behavior, with a brief analysis of maps in the brain. We distinguish egocentric maps–which we relate to the many visual systems–from allocentric maps. We offer a somewhat unconventional view of short-term and long-term memory. We examine cooperative computation in somatotopically organized networks, relating this to visually guided behavior in the frog, and to the interaction of colliculus and cortex in the control of eye movements. We examine, but do not advocate, the hypothesis that the hippocampus is a cognitive map. We do stress that if it is a cognitive map, it must be seen as a chart of the local neighborhood, rather than the whole atlas; and we note that the cognitive map hypothesis would lead one to expect the region to exhibit activation of place cells before the animal leaves the previous place.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J. M. (1977) Evolution of the visual system in the early primates. Progress in Psychobiology and Physiological Psychology 7: 153. [taIL]Google Scholar
Allman, J. M. & Kass, J. H. (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Research 35: 89100. [taIL]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1972) The metaphorical brain. New York: Wiley-Interscience. [tarIL]Google Scholar
Arbib, M. A. (1976) Program synthesis and sensorimotor coordination. Brain Theory Newsletter 2: 3233. [taIL]Google Scholar
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology, section on neurophysiology, vol. 2, part 2, Motor control, ed. Brooks, V. B.. Bethesda, Md.: American Physiological Society. [taIL]Google Scholar
Arbib, M. A. & Caplan, D. (1979) Neurolinguistics must be computational. Behavioral and Brain Sciences 2: 449–83. [tarIL]CrossRefGoogle Scholar
Arbib, M. A., Kilmer, W. L. & Spinelli, D. N. (1976) Neural models and memory. In: Neural mechanisms of learning and memory, ed. Rosenzweig, M. R., & Bennett, E. L., pp. 109–32. Cambridge, Mass.: MIT Press. [rIL]Google Scholar
Arbib, M. A. & Lieblich, I. (1977) Motivational learning of spatial behavior. In: Systems neuroscience, ed. Metzler, J., pp. 221–39. New York: Academic Press. [taIL, DNS]Google Scholar
Armstrong, D. M. (1968) A materialistic theory of the mind. London: Routledge and Kegan Paul. [rIL]Google Scholar
Bachus, S. E. & Valenstein, E. S. (1979) Individual behavioral responses to hypothalamic stimulation persist despite destruction of tissue surrounding electrode tip. Physiology and Behavior 23: 421–26. [taIL]CrossRefGoogle ScholarPubMed
Barto, A. G. & Sutton, R. S. (1981) Landmark learning: An illustration of associative search. Biological Cybernetics 42: 18. [rIL]CrossRefGoogle ScholarPubMed
Beritov, I. (1965) Neural mechanisms of higher vertebrates. Translated by Liberson, W. T.. Boston: Little Brown & Co. [rIL, MP]Google Scholar
Berlyne, D. E. (1969) The reward-value of indifferent stimulation. In: Reinforcement and behavior, ed. Tapp, J. T.. New York: Academic Press. [AIK]Google Scholar
Berlyne, D. E., Koenig, I. D. D. & Hirota, T. (1966) Novelty, arousal and reinforcement of diversive exploration in the rat. Journal of Comparative Physiological Psychology 62: 222–26. [AIK]CrossRefGoogle ScholarPubMed
Bindra, D. (1978) How adaptive behavior is produced: A perceptual-motivational alternative to response-reinforcement. Behavioral and Brain Sciences 1: 4191. [taIL]CrossRefGoogle Scholar
Bower, G. H. (1959) Choice-point behavior. In: Studies in mathematical learning theory, ed. Bush, R. R., & Estes, W. K.. Stanford: Stanford University Press. [JWM]Google Scholar
Boylls, C. C. (1975) A theory of cerebellar function with applications to locomotion. I. The physiological role of climbing fiber inputs in anterior lobe operation. Computer and Information Science Department Technical Report 75C-6, University of Massachusetts at Amherst. [taIL]Google Scholar
Bremner, J. G. (1978) Egocentric vs allocentric spatial coding in nine month old infants: Factors influencing the choice of code. Developmental Psychology 14: 346–55. [MP]CrossRefGoogle Scholar
Brown, A., Feldman, R. S. & Moore, J. W. (1968) Conditional discrimination learning based upon chlordiazepoxide. Journal of Comparative Physiological Psychology 66: 211–45. [taIL]CrossRefGoogle ScholarPubMed
Brown, J. S. (1942) The generalization of approach responses as a function of stimulus intensity and strength of motivation. Journal of Comparative Psychology 33: 209–26. [taIL]CrossRefGoogle Scholar
Brown, J. S. (1948) Gradients of approach and avoidance responses and their relation to motivation. Journal of Comparative Psychology 41: 450–56. [taIL]Google ScholarPubMed
Bryan, R. G. & Spear, N. E. (1976) Forgetting of a discrimination after intervals of intermediate length: The Kamin effect with choice behavior. Journal of Experimental Psychology: Animal Behavior Processes 2: 221–34. [taIL]Google Scholar
Cliff, A. D. & Ord, J. K. (1973) Spatial autocorrelation. London: Pion. [RMD, IL]Google Scholar
Critchley, M. (1971) The parietal lobes. New York: Hafner Publishing Company [CMB]Google Scholar
Davis, W. J. & Gillette, R. (1978) Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea. Science 199: 801–4. [rIL]CrossRefGoogle ScholarPubMed
Dennett, D. C. (1978) Requisition for a pexgo. Behavioral and Brain Sciences 1: 5657. [AT]CrossRefGoogle Scholar
Deutsch, J. A. (1960) The structural basis of behavior. Chicago: University of Chicago Press. [taIL]Google Scholar
Deutsch, J. A. (1979) Drive – another point of view. Trends in Neuroscience 1979: 242–44. [taIL]CrossRefGoogle Scholar
Didday, R. L. & Arbib, M. A. (1975) Eye-movements and visual perception: A “two-visual system” model. International Journal of Man-Machine Studies 7: 547–69. [taIL]CrossRefGoogle Scholar
Doran, J. & Michie, D. (1966) Experiments with the graph traverser program. Proceedings of the Royal Society of London Series A 294: 235–59. [taIL]Google Scholar
Downs, R. M. (1981a) Maps and mappings as metaphors for spatial representation. In: Spatial representation and behavior across the life span, ed. Liben, L., Patterson, A., and Newcombe, N., pp. 143–66. New York: Academic Press. [RMD]Google Scholar
Downs, R. M. (1981b) Maps and metaphors. Professional Geographer 33: 287–93. [RMD]CrossRefGoogle Scholar
Downs, R. M. & Stea, D., eds. (1973) Image and environment: Cognitive mapping and spatial behavior. Chicago: Aldine. [SK]Google Scholar
Durup, H. (1981) Paramètres de l'orientation locomotrice autogène (sans repères locaux). In: Communication au forum espace III: “Position et mouvement,” Marseille: CNRS. [rIL, JP]Google Scholar
Emlen, S. T. (1975) The stellar-orientation system of a migratory bird. Scientific American 233: 102–11. [MP]CrossRefGoogle ScholarPubMed
Ernst, G. W. & Newell, A. (1969) GPS: A case study iln generality and problem solving. New York: Academic Press. [taIL]Google Scholar
Feldman, J. A. & Sproull, R. F. (1977) Decision theory and artificial intelligence. II: The hungry monkey. Cognitive Science 1: 158–92. [rIL]Google Scholar
Fikes, R. E., Hart, P. E. & Nilsson, N. J. (1972) Learning and executing generalized robot plans. Artificial Intelligence 3: 251–88. [taIL]CrossRefGoogle Scholar
Fikes, R. E. & Nilsson, N. J. (1971) STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2: 189298. [taIL]CrossRefGoogle Scholar
Garcia, J., Hankins, W. G. & Rusiniak, K. W. (1974) Behavioral regulation of the milieu interne in man and rat. Science 185: 824–31. [rIL, MP]CrossRefGoogle Scholar
Geschwind, N. (1964) The development of the brain and the evolution of language. In: Monograph series on languages and linguistics, vol. 17, ed. Stuart, C. I. J. M., pp. 115–69. Washington: Georgetown University Press. [DNS]Google Scholar
Gibson, J. J. (1979) The ecological approach to visual perception. Boston: Houghton-Mifflin. [RES]Google Scholar
Gough, P. B. (1962) Some tests of Hullian analysis of reasoning in the rat. Psychonomic Science Convention, Saint Louis. [taIL]Google Scholar
Gould, P. & White, R. (1974) Mental Maps. Harmondsworth: Penguin Books. [rIL]CrossRefGoogle Scholar
Greene, P. H. (1972) Problems of organization of motor systems. In: Progress in theoretical biology, ed. Rosen, R., & Snell, F.. New York: Academic Press. [rIL]Google Scholar
Gross, C. G., Rocha-Mirada, C. E. & Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35: 96111. [taIL]CrossRefGoogle ScholarPubMed
Grossman, S. P. (1962) Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. American Journal of Physiology 202: 872–82. [taIL]CrossRefGoogle ScholarPubMed
Grzimek, B. (1968) On the psychology of the horse. In: Man and animal: Studies in behavior, pp. 3745. New York: St. Martin's Press. [rIL]Google Scholar
Hart, P., Nilsson, N. J. & Raphael, B. (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC-4: 100107. [taIL]CrossRefGoogle Scholar
Harvey, P. D. A. (1980) The history of topographical maps: Symbols, pictures and surveys. London: Thames and Hudson. [rIL]Google Scholar
Hilgard, E. R. (1956) Theories of learning, 2d ed.New York: Appleton-Century-Crofts. [JWM]Google Scholar
Hirsch, H. V. B. & Spinelli, D. N. (1970) Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168: 869–71. [DNS]CrossRefGoogle ScholarPubMed
Hirsch, H. V. B. & Spinelli, D. N. (1971) Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Experimental Brain Research 13: 509–27. [DNS]Google Scholar
Hobson, J. A. & Scheibel, A. B. (1980) The brain stem core: Sensorimotor integration and behavioral state control. Neuroscience research program bulletin 18. Cambridge, Mass.: MIT Press. [taIL]Google Scholar
Hoebel, B. G. (1977) The psychopharmacology of feeling. In: Handbook of psychopharmacology, vol. 8, ed. Iversen, L. L., Iversen, S. D., & Snyder, S. H.. New York: Plenum Press. [taIL]Google Scholar
Hooper, K. (1981a) The use of computer-controlled videodisks in the study of spatial learning. Behavior Research Methods and Instrumentation 13: 7784. [KH]CrossRefGoogle Scholar
Hooper, K. (1981b) Experimental mapping (final technical report). Santa Cruz, Calif: University of California Environmental Cognition Center. [KH, rIL]Google Scholar
Hubel, D. H., Wiesel, T. N. & Stryker, M. P. (1978) Anatomical demonstration of orientation columns in Macaque monkey. Journal of Comparative Neurology 177:361–79. [rIL]CrossRefGoogle ScholarPubMed
Hull, C. L. (1933) Differential habituation to internal stimuli in the albino rat. Journal of Comparative Psychology 15: 255–73. [taIL]CrossRefGoogle Scholar
Hull, C. L. (1943) Principles of behavior. New York: Appleton-Century-Crofts. [rIL, JWM]Google Scholar
Ingle, D. (1976) Spatial vision in anurans. In: The amphibian visual system, ed. Fite, K. V., pp. 119–41. New York: Academic Press. [taIL]CrossRefGoogle Scholar
Ingle, D. (1982) Brain mechanisms of visual localization by frogs and toads. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Ingle, D., & Capranica, R.. New York: Pergamon Press. [rIL]Google Scholar
Ingle, D. (in preparation) A functional approach to the many visual systems dilemma. [taIL]Google Scholar
John, E. R. & Killam, K. F. (1959) Electrophysiological correlates of avoidance conditioning in the cat. Journal of Pharmacology and Experimental Therapeutics 125: 252–74. [DNS]Google ScholarPubMed
Kandel, E. R. (1978) A cell-biological approach to learning. Bethesda, Md.: Society for Neuroscience. [taIL]Google Scholar
Kaplan, S. (1973) Cognitive maps in perception and thought. In: Downs, R. M., & Stea, D.. Image and environment: Cognitive mapping and spatial behavior, ed. Chicago: Aldine [rIL, SK]Google Scholar
Kaplan, S. & Kaplan, R. (1983) Cognition and environment: Functioning in an uncertain world. New York: Praeger. [SK]Google Scholar
Kendler, H. H. (1946) The influence of simultaneous hunger and thirst drives upon the learning of the opposed spatial responses of the white rat. Journal of Experimental Psychology 36: 212–20. [taIL]CrossRefGoogle ScholarPubMed
Klein, F. (1939) Elementary mathematics from an advanced standpoint: Geometry. Translated from 3rd German ed. by Hedrick, E. R., & Noble, C. A.. New York: MacMillan. [rIL]Google Scholar
Kuipers, B. (1978) Modeling spatial knowledge. Cognitive Science 2: 129–53. [JP]Google Scholar
Kuipers, B. (1979) Commonsense knowledge of space: Learning from experience. Proceedings of the International Joint Conference on Artificial Intelligence, pp. 499501. [BK, taIL]Google Scholar
Kuipers, B. (in press) The “map in the head” metaphor. Environment and Behavior. [BK]Google Scholar
Lashley, K. S. (1950) In search of the engram. Symposia of the Study for Experimental Biology 4: 454–82. [DNS]Google Scholar
Leeper, R.(1935) The role of motivation in learning: A study of the phenomenon of differential motivational control of the utilization of habit. Journal of Genetic Psychology 46: 340. [taIL]Google Scholar
Lieblich, I. & Olds, J. (1970) Inhibition of hippocampal unit activity with motor movement. Proceedings of the 78th Meeting of the American Psychological Association, Miami, Florida. [taIL]Google Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3: 485534. [taIL]CrossRefGoogle Scholar
MacCorquodale, K. & Meehl, P. E. (1949) “Cognitive” learning in the absence of competition of incentives. Journal of Comparative Physiological Psychology 42: 383–90. [taIL]CrossRefGoogle ScholarPubMed
Meehl, P. E. & MacCorquodale, K. (1948) A further study of latent learning in the T-maze. Journal of Comparative Physiological Psychology 41: 372–96. [taIL]CrossRefGoogle ScholarPubMed
Menzel, E. W.(1973) Chimpanzee spatial memory organization. Science 182: 943–45. [rIL, MP]CrossRefGoogle ScholarPubMed
Miller, N. E. (1959) Extension of liberalized S-R theory. In: Psychology: A study of a science, vol. 2, ed. Koch, S.. New York: McGraw-Hill. [taIL]Google Scholar
Miller, S. L., Potegal, M. & Abraham, L. (1981) Vestibular involvement in spatial orientation. Society for Neuroscience Abstracts 7: 484. [MP]Google Scholar
Milner, P. M. (1977) Models of motivation and reinforcement. In: Brain stimulation reward, ed. Wauquier, A, & Rolls, E. T.. Amsterdam: North Holland. [taIL]Google Scholar
Minsky, M. L. (1975) A framework for representing knowledge. In: The psychology of computer vision, ed. Winston, P. H., pp. 211–77. New York: McGraw-Hill. [taIL]Google Scholar
Moore, G. T. & Golledge, R. G., eds. (1976) Environmental knowing. Stroudsburg, Pa.: Dowden, Hutcinson and Ross. [SK]Google Scholar
Moore, J. W. & Stickney, K. J. (in press) Goal tracking attentional-associative networks: Spatial learning and the hippocampus. Physiological Psychology. [JWM]Google Scholar
Morgan, M. J. (1979) The concept of drive. Trends in Neuroscience 1979: 240–42. [taIL]CrossRefGoogle Scholar
Mountcastle, V. B., Motter, B. C. & Andersen, R. A. (1980) Some further observations on the functional properties of neurons in the parietal lobe of the waking monkey. Behavioral and Brain Sciences 3: 520–22. [tarIL]CrossRefGoogle Scholar
Newell, A. & Simon, H. A. (1972) Human problem solving. Englewood Cliffs, N.J.: Prentice-Hall. [taIL]Google Scholar
Nicod, J. (1930) Foundations of geometry and induction. Reprinted University of California Press. [rIL]Google Scholar
Norman, D. A. (1981) A psychologist views human processing: Human errors and other phenomena suggest processing mechanisms. Proceedings International Joint Conference on Artificial Intelligence. University of British Columbia, Vancouver, B.C., Canada, 08 1981, 10971101. [JAF]Google Scholar
O'Keefe, J. (1976) Place units in the hippocampus of the freely moving rat. Experimental Neurology 51: 78109. [taIL]CrossRefGoogle ScholarPubMed
O'Keefe, J. & Dostrovsky, J. (1971) The hippocampus as a spatial map. Brain Research 34: 171–75. [taIL]CrossRefGoogle ScholarPubMed
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Oxford: Oxford University Press. [taIL]Google Scholar
O'Keefe, J. & Nadel, L. (1979) Multiple book review of The hippocampus as a cognitive map. Behavioral and Brain Sciences 2: 487533. [taIL, JP]CrossRefGoogle Scholar
Olton, D. S., Becker, J. T. & Handelmann, G. E. (1979) Hippocampus, space, and memory. Behavioral and Brain Sciences 2: 313–65. [taIL, JP]CrossRefGoogle Scholar
Olton, D. S. & Samurlson, R. J. (1976) Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes 2: 97116. [taIL]Google Scholar
Pailhous, J. (1970) La représentation de l'espace urbain. Paris: P.U.F. [JP]Google Scholar
Pailhous, J. (in press) Representation of urban space. In: Social representation, ed. Fan, R., & Moscovici, S.. Cambridge: Cambridge University Press. [JP]Google Scholar
Peruch, P. (1981) Rôle des référentiels spatiaux dans les activités de localisation. Doctoral thesis, Université de Provence. [JP]Google Scholar
Piaget, J. & Inhelder, B. (1947) La représentation de l'espace chez l'enfant. Paris: P.U.F [rIL, JP]Google Scholar
Piaget, J., Inhelder, B. & Szeminska, A. (1948) La géométrie spontanée de l'enfant. Paris: P.U.F. [rIL, JP]Google Scholar
Pitts, W. H. & McCulloch, W. S. (1947) How we know universals, the perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9: 127–47. [taIL]CrossRefGoogle ScholarPubMed
Prccht, W. (1981) Functional organization of optokinetic pathways in mammals. In: Progress in oculomotor research, ed. Fuchs, A. F., & Becker, W.. New York: Elsevier/North Holland. [CMB]Google Scholar
Ranck, J. Jr. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Experimental Neurology 41: 461é522. [taIL]CrossRefGoogle Scholar
Rescorla, R. A. (1976) Stimulus generalization: Some predictions from a model of Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes 2: 88é96. [taIL]Google Scholar
Roberts, W. W. (1969) Are hypothalamic motivational mechanisms functionally and anatomically specific? Brain, Behavior and Evolution. 2: 317–42. [taIL]CrossRefGoogle Scholar
Robinson, D. A. (1981) Control of eye movements. In: Handbook of physiology – The nervous system II, ed. Magoun, H., & Field, J., pp. 12751321. Washington: American Physiological Society. [JAF]Google Scholar
Saccrdoti, E. D. (1974) Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5: 115–35. [taIL]CrossRefGoogle Scholar
Seligman, M. E. & Beagley, G. (1975) Learned helplessness in the rat. Journal of Comparative Physiological Psychology 88: 534–41. [taIL]CrossRefGoogle ScholarPubMed
Selverston, A. I. (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3: 535–72. [JAF]CrossRefGoogle Scholar
Shaw, R. E. & McIntyre, M. (1974) Algoristic foundations of cognitive psychology. In: Cognition and the symoblic processes, 1, ed. Weimer, W., & Palermo, D.. Hillsdale, N.J.: Erlbaum. [RES]Google Scholar
Shaw, R. E. & Turvey, M. T. (1981) Coalitions as models for ecosystems: A realist perspective on perceptual organization. In: Perceptual organization, ed. Kubovy, M., & Pomerantz, J.. Hillsdale, N.J.: Erlbaum. [RES]Google Scholar
Shaw, R. E., Turvey, M. T. & Mace, W. M. (1981) Ecological psychology: The consequence of a commitment to realism. In: Cognition and the symbolic processes, 2, ed. Weimer, W. and Palermo, D.. Hillsdale, N.J.: Erlbaum. [RES]Google Scholar
Shepard, R. N. (1981) Psychophysical complementarity. In; Perceptual organization, ed. Kubovy, M., & Pomerantz, J. R.. Hillsdale, N.J.: Erlbaum. [SK]Google Scholar
Simon, H. A. (1969) The sciences of the artificial. Cambridge, Mass.: MIT Press. [BK]Google Scholar
Singer, G. & Montgomery, R. B. (1973) Specificity of chemical stimulation in the rat brain and other related issues in the interpretation of chemical stimulation data. Pharmacology, Biochemistry and Behavior 1: 211–21. [taIL]CrossRefGoogle Scholar
Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press. [rIL]Google Scholar
Spence, K. W. (1960) Behavior theory and learning. Englewood Cliffs, N.J.: Prentice-Hall. [JWM]Google Scholar
Spence, K. W. & Lippitt, R. (1940) Latent learning of a simple maze problem with relevant needs satiated. Psychological Bulletin 37: 429. [taIL]Google Scholar
Spence, K. W. & Lippitt, R. (1946) An experimental test of the sign Gestalt theory of trial-and-error learning. Journal of Experimental Psychology 36: 491502. [taIL]CrossRefGoogle Scholar
Sperry, R. W. (1961) Cerebral organization and behavior. Science 133: 1749 [DNS]CrossRefGoogle ScholarPubMed
Sperry, R. W. & Miller, N. (1955) Pattern perception following insertion of mica plates into visual cortex. Journal of Comparative and Physiological Psychology 48: 463–69. [DNS]CrossRefGoogle ScholarPubMed
Spinelli, D. N. (1975) Silver tipped metal microelectrodes: A new method for recording and staining single neurones. Brain Research 91: 271–75. [DNS]CrossRefGoogle ScholarPubMed
Spinelli, D. N., Hirsch, H. V. B., Phelps, R. W. & Metzler, J. (1972) Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Experimental Brain Research 15: 289304. [DNS]CrossRefGoogle ScholarPubMed
Spinelli, D. N. & Jensen, F. E. (1979) Plasticity: The mirror of experience. Science 203: 7579. [DNS]CrossRefGoogle ScholarPubMed
Stea, D. (1979) Program notes on a spatial fugue. In: Environmental knowing: Theories, research and methods, ed. Moore, G. T., & Golledge, R. G., pp. 106–20. Stroudsburg, Pa.: Hutchinson & Ross. [JP]Google Scholar
Strain, E. R. (1953) Establishment of an avoidance gradient under latent learning conditions. Journal of Experimental Psychology 46: 391–99. [taIL)]CrossRefGoogle ScholarPubMed
Tolman, E. C. (1948) Cognitive maps in rats and men. Psychological Review 55: 189208. [BK]CrossRefGoogle ScholarPubMed
Tolman, E. C. & Honzik, C. H. (1930) Degrees of hunger, reward and non-reward, and maze learning in rats. California University Publications in Psychology 4: 241–75. [taIL]Google Scholar
Turvey, M. T., Shaw, R. E., Reed, E. S. & Mace, W. E. (1981) Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition 9: 237304. [RES]CrossRefGoogle ScholarPubMed
Uster, H. J., Baettig, K. & Naegeli, H. H. (1976) Effects of maze geometry and experience on exploratory behavior in the rat. Animal Learning and Behavior 4: 8488. [taIL]CrossRefGoogle Scholar
Valenstein, E. S., Cox, V. C. & Kakolewski, J. (1970) A reexamination of the role of the hypothalamus in motivation. Psychological Review 77: 1631. [taIL]CrossRefGoogle ScholarPubMed
Van Essen, D. C. (1979) Visual areas of the mammalian cerebral cortex. In: Annual review of neuroscience, vol. 2, ed. Cowan, W. M., Hall, Z. W., & Kandel, E. R.. Palo Alto, Calif.: Annual Reviews. [CMB]Google Scholar
Van Harreveld, A. & Fifkova, E. (n.d.) Mechanism for potentiation and short term memory. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 78: 2124. [DNS]Google Scholar
Viana Di Prisco, G. & Spinelli, D. N. (1981) Observations on cortical plasticity using horseradish peroxidase. Experimental Neurology 74, no. 3. New York: Academic Press. [DNS]Google Scholar
Wiesel, T. N. & Hubel, D. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28: 1029–40. [DNS]CrossRefGoogle ScholarPubMed
Wise, R. A. (1971) Individual differences in effects of hypothalamic stimulation: The role of stimulation locus. Physiology and Behavior 6: 569–72. [taIL]CrossRefGoogle ScholarPubMed
Woodworth, R. S. & Schlosberg, H. (1954) Experimental psychology. New York: Holt. [taIL]Google Scholar
Wurtz, R. H. & Albano, J. E. (1980) Visual-motor function of the primate superior colliculus. In: Annual review of neuroscience, vol. 3, ed. Cowan, W. M., Hall, Z. W., & Kandel, E. R.. Palo Alto, Calif: Annual Reviews. [CMB]Google Scholar
Young, H. F., Greenberg, E. R., Paton, W. & Jane, J. A. (1967) A reinvestigation of cognitive maps. Psychonomic Science 9: 589–90. [MP]CrossRefGoogle Scholar