Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T23:02:26.114Z Has data issue: false hasContentIssue false

Models of neurological defects and defects in neurological models

Published online by Cambridge University Press:  04 February 2010

Timothy Schallert
Affiliation:
Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712. [email protected]

Abstract

The transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulla, F. A., Calaminici, M. R., Raevsky, V. V., Sinden, J. D., Gray, J. A. & Stephenson, J. D. (1994) An iontopheretic study of the effects of AMPA lesions of the nucleus basalis magnoccllularis on cholinergic and GABAergic influences on frontal cortex neurones of rats. Experimental Brain Research 98:441–56. [aJDS]CrossRefGoogle Scholar
Adachi, M., Schneck, L. & Volk, B. W. (1974) Ultrastructural studies of eight cases of fetal Tay-Sachs disease. Laboratory Investigation 30:102. [aEAN]Google ScholarPubMed
Aebischer, P., Winn, S. R. & Galletti, P. M. (1988) Transplantation of neural tissue in polymer capsules. Brain Research 448:364–68. [rEAN]CrossRefGoogle ScholarPubMed
Ahlskog, J. E., Kelly, P. T., Van Herdeen, J. A., Stoddard, S. L., Tyce, G. M., Windebank, A. J., Bailey, P. A., Bell, G. N., Blexrud, M. D., & Carmichael, S. W. (1990) Adrenal medullary transplantation into the brain in treatment of Parkinson's disease: Clinical outcome of neurochemical studies. Mayo Clinical Proceedings 65:305–28. [aDGS]CrossRefGoogle ScholarPubMed
Akli, S., Caillaud, C., Vigne, E., Stratford-Perricaudet, L. D., Poenaru, L., Perricaudet, M., Kahn, A. & Peschanski, M. R. (1993) Transfer of a foreign gene into the brain using adenovirus vectors. Nature Cenetics 3:224–28. [aEAN]CrossRefGoogle ScholarPubMed
Alheid, G. F. & Heimer, L. (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:139. [aJDS]CrossRefGoogle ScholarPubMed
Allen, Y. S., Marchbanks, R. M. & Sinden, J. D. (1988) Non-specific effects of the putative cholinergic neurotoxin ethylcholine mustard aziridinium ion in the rat brain examined by autoradiography, immunocytochemistry and gel electrophoresis. Neuroscience Letters 95:6974. [aJDS]CrossRefGoogle ScholarPubMed
Altar, C. A., Armanini, M., Dugich-Djordjevic, M., Bennett, G. L., Williams, R., Feinglass, S., Anicetti, V., Sinicropi, D. & Bakhit, C. (1992) Recovery of cholinergic phenotype in the injured rat neostriatum: Roles for endogenous and exogenous nerve growth factor. Journal of Neurochemistry 59:2167–77. [rDGS]CrossRefGoogle ScholarPubMed
Altmann, D. M. & Trowsdale, J. M. (1989) Major histocompatability complex: Structure and function. Current Opinion in Immunology 2:93102. [JPB]CrossRefGoogle ScholarPubMed
Amaral, D. G. & Kurz, J. (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. Journal of Comparative Neurology 281:337–61. [aJDS]CrossRefGoogle Scholar
Andersen, J. K., Frim, D. M., Isacson, O. & Breakefield, X. O. (1993) Herpesvirus-mediated gene delivery into the rat brain: Specificity and efficiency of the neuron-specific enolase promoter. Cellular and Molecular Neurobiology 13:503–15. [rEAN]CrossRefGoogle ScholarPubMed
Anderson, K. J., Gibbs, R. B. & Cotman, C. W. (1988) Transmitter phenotype is a major determinant in the specificity of synapses formed by cholinergic neurons transplanted to the hippocampus. Neuroscience 25:1925. [aJDS]CrossRefGoogle Scholar
Anderson, K. J., Gibbs, R. B., Salvaterra, P. M. & Cotman, C. W. (1986) Ultrastriictural characterisation of identified cholinergic neurons transplanted to the hippocampal formation of the rat. Journal of Comparative Neurology 249:279–92. [aJDS]CrossRefGoogle Scholar
Anfossi, G., Cewirtz, A. M. & Calabretta, B. (1989) An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proceedings of the National Academy of Sciences USA 86:3379–83. [LC]CrossRefGoogle ScholarPubMed
Annas, G. J. & Elias, S. (1989) The politics of transplantation of human fetal tissue. New England Journal of Medicine 320:1079–82. [KAC]CrossRefGoogle ScholarPubMed
Apostol, G. & Creutzfeldt, O. D. (1974) Cross-correlation between the activity of septal units and hippocampal EEC during arousal. Brain Research 67:6575. [aJDS]CrossRefGoogle Scholar
Appel, S. H. (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer's disease. Annals of Neurology 10:499505. [EJM]CrossRefGoogle Scholar
Arbuthnott, G., Dunnett, S. & MacLeod, N. (1985) Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neuroscience Letters 57:205–10. [JPB]CrossRefGoogle ScholarPubMed
Arendt, T., Allen, Y., Marchbanks, R., Schugens, M. M., Sinden, J., Lantos, P. L. & Gray, J. A. (1989) Cholinergic system and memory in the rat: Effects of chronic ethanol, embryonic basal forebrain transplants and excitotoxic lesions of cholinergic basal forebrain projection systems. Neuroscience 33:435–62. [arJDS]CrossRefGoogle Scholar
Arendt, T., Allen, Y., Sinden, J., Schugens, M. M., Marchbanks, R. M., Lantos, P. L. & Gray, J. A. (1988a) Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Nature 332:448–50. [aJDS]CrossRefGoogle ScholarPubMed
Arendt, T., Bigl, V., Arendt, A. & Tennstedt, A. (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's disease. Acta Neuropathologica 61:101–8. [aJDS]CrossRefGoogle ScholarPubMed
Arendt, T., Hennig, D., Gray, J. A. & Marchbanks, R. M. (1988b) Loss of neurons in the rat basal forebrain projection system after prolonged intake of ethanol. Brain Research Bulletin 21:563–70. [aJDS]CrossRefGoogle ScholarPubMed
Arnason, B. G. W. (1983) Relevance of experimental allergic encephalomyelitis to multiple sclerosis. Neurologic Clinics 1:765–82. [JPB]CrossRefGoogle ScholarPubMed
Attella, M. J., Nattinville, A. & Stein, D. G. (1987) Hormonal state affects recovery from frontal cortex lesions in adult female rats. Behavioral and Neural Biology 48:352–67. [aDGS]CrossRefGoogle ScholarPubMed
Attwell, D., Barbour, B. & Szatkowski, M. (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–7. [WJF]CrossRefGoogle ScholarPubMed
Bachevalier, J. & Mishkin, M. (1989) Mnemonic and neuropathological effects of occluding the posterior cerebral artery in Macaca mulatto. Ncuropsychologia 27:83105. [rJDS]CrossRefGoogle Scholar
Backlund, E. O., Granberg, P. -O., Hamberger, B., Sedwall, G., Seiger, A. & Olson, L. (1985) Transplantation of adrenal medullary tissue to striatum in Parkinsonism. In: Neural grafting in the mammalian CNS, ed. Björklund, A. & Stenevi, U.. Elsevier, . [aDGS]Google ScholarPubMed
Baddeley, A. D. (1986) Working memory. Clarendon Press. [aJDS]Google ScholarPubMed
Baddeley, A., Bressi, S., Delia, Salla S., Logie, R. & Spinnler, S. (1991) The decline of working memory in Alzheimer's disease. Brain 114:2521–42. [BA]CrossRefGoogle ScholarPubMed
Baisden, R. H., Paul, D. J., Hossler, F. E. & Woodruff, M. L. (1992) Surface morphology of fetal neural transplants into the lateral ventricles after hippocampal lesions. Experimental Neurology 115:335–46. [RHB]CrossRefGoogle ScholarPubMed
Bajocchi, G., Feldman, S. H., Crystal, R. G. & Mastrangeli, A. (1993) Direct in vivo gene transfer to ependymal cells in the central nervous system using rccombinant adenovirus vectors. Nature Cenetics 3:229–34. [aEAN, LC]CrossRefGoogle ScholarPubMed
Banker, C. A. (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–10. [aDGS, rDGS, KS–C]CrossRefGoogle ScholarPubMed
Bankiewicz, K. S., Mandel, R. J. & Sofroniew, M. V. (1993) Trophism, transplantation and animal models of Parkinson's disease. Experimental Neurology 124:140–49. [rDGS]CrossRefGoogle ScholarPubMed
Bankiewicz, K. S., Plunkett, R. J., Jacobowitz, D. M., Kopin, I. J. & Oldfield, E. H. (1991) Fetal nondopaminergic neural implants in Parkinsonian primates. Journal of Neurosurgery 74:97–14. [aDGS, rDGS, KS-C]CrossRefGoogle ScholarPubMed
Bankiewicz, K. S., Plunkett, R. J., Kopin, I. J., Jacobowitz, D. M., London, W. T. & Oldfield, E. H. (1988) Transient behavioral recovery in hemiparkinsonian primates after adrenal medullary autografts. Progress in Brain Research 78:507–51. [WJF]Google Scholar
Bankiewicz, K. S., Plunkett, R. J., Jacobowitz, D. M., Kopin, I. J. & Oldfield, E. H. (1991) Fetal nondopaminergic neural implants in parkinsonian primates. Histochemical and behavioral studies. Journal of Neurosurgery 74:97104. [rDGS]CrossRefGoogle ScholarPubMed
Barbeau, H., Chau, C. & Rossignol, S. (1993) Noradrenergic agonists and locomotor training affect locomotor recovery after cord transcction in adult cats. Brain Research Bulletin 30:387–93. [AP]CrossRefGoogle ScholarPubMed
Barbeau, H., Danakas, M. & Arsenault, B. (1993) The effects of locomotor training in spinal cord injured subjects – A preliminary study. Restorative Neurology and Neuroscience 5:8184. [AP]CrossRefGoogle ScholarPubMed
Barbeau, H. & Rossignol, S. (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Research 386:8495. [AP]CrossRefGoogle Scholar
Barth, T. M. & Stanfield, B. B. (1990) The recovery of forelimb-placing behavior in rats with neonatal unilateral cortical damage involves the remaining hemisphere. Journal of Neuroscience 1:3449–59. [BBS]CrossRefGoogle Scholar
Barth, T. M. & Stanfield, B. B. (1994) Homotopic, but not heterotopic, fetal cortical transplants can result in functional sparing following neonatal damage to the frontal cortex in rats. Cerebral Cortex 4:271–78. [BBS]CrossRefGoogle ScholarPubMed
Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–17. [aDGS, aJDS]CrossRefGoogle ScholarPubMed
Baserga, R., Reiss, K., Alder, H., Pietrzkowski, Z. & Surmacz, E. (1992) Inhibition of cell cycle progression by antisensc oligodeoxynucleotides. Annals of the New York Academy of Science 660:6469. [LC]CrossRefGoogle ScholarPubMed
Baudry, M. & Davis, J. L. (1991) Long-term potentiation: A debate of current issues. MIT Press. [aJDS]Google Scholar
Bayer, S. A. (1980) Development in the hippocampal region in the rat -1. Neurogenesis examined with 3H-thymidine autoradiography. Journal of Comparative Neurology 190:87114. [aJDS]CrossRefGoogle ScholarPubMed
Bayer, S. A. (1990) Development of the lateral and medial limbic cortices in the rat in relation to cortical phylogeny. Experimental Neurology 107:118–31. [YJL]CrossRefGoogle ScholarPubMed
Beall, S. S., Biddison, W. E., McFarlin, D. E., McFarland, H. F., Hood, L. E. (1993) Susceptibility for multiple sclerosis is determined in part by inheritance of a 175-kb region of the TcR V beta chain locus and HLA class II genes. Journal of Neuroimmunology 45:5360. [JPB]CrossRefGoogle ScholarPubMed
Bechtel, W. & Richardson, R. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press. [BA]Google Scholar
Bechtereva, N. P., Abdullaev, Y. G. & Medvedev, S. V. (1992) Properties of neuronal activity in cortex and subcortical nuclei of the human brain during single-word processing. Electroencephalography and Clinical Neurophysiology 82:296301. [rDGS]CrossRefGoogle ScholarPubMed
Beck, T., Lutz, B., Thole, U. & Wree, A. (1993) Assessing chronic brain damage by quantification of regional volumes in post ischemic rat brain. Brain Research 605:280–86. [HPD]CrossRefGoogle Scholar
Behl, C., Winkler, J., Bogdahn, U., Meixensberger, J., Schligensiepen, K.-H. & Brysch, W. (1993) Autocrine growth regulation in neuroectodermal tumors as detected with oligodeoxynucleotide antisense molecules. Neurosurgery 33:679–84. [LC]Google ScholarPubMed
Benedict, W. F., Xu, H. J., Hu, S. X. & Takahashi, R. (1990) Role of the retinoblastoma gene in the initiation and progression of human cancer. Journal of Clinical Investigation 85:988–93. [GMS]CrossRefGoogle ScholarPubMed
Benson, D. F. (1979) Aphasia, alexia, and agraphia. Churchill Livingstone. [MPL]Google Scholar
Bergman, H., Wichmann, T. & DeLong, M. R. (1990) Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–38. [aDGS]CrossRefGoogle ScholarPubMed
Bernstein, J. J. & Goldberg, W. J. (1991) Grafted fetal astrocyte migration can prevent host neuronal atrophy: Comparison of astrocytes from cultures and whole piece donors. Restorative Neurology and Neuroscience 2:261–70. [RHB]CrossRefGoogle ScholarPubMed
Biddison, W. E., Beall, S. S., Concannon, P., Charmley, P., Gatti, R. A., Hood, L. E., McFarland, H. F., McFarlin, D. E. (1989) The germline repertoire of T-cell receptor beta-chain genes in patients with multiple sclerosis. Research in Immunology 140:212—15. [JPB]CrossRefGoogle ScholarPubMed
Bigl, V., Woolf, N. J. & Butcher, L. L. (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis. Brain Research Bulletin 8:727–49. [YJL]CrossRefGoogle ScholarPubMed
Bittman, E. L., Matsumoto, S., Markuns, J., Meyer, E. & Jetton, A. E. (1993) Do SCN grafts reinstate endocrine rhythms? Society for Neuroscience Abstracts 19:574. [RS]Google Scholar
Björklund, A., Lindvall, O., Isacson, O., Brundin, P., Wictorin, K., Strecker, R. E., Clarke, D. J. & Dunnett, S. B. (1987) Mechanisms of action of intracerebral neural implants – studies on nigral and striatal grafts to the lesioned striatum. Trends in Neuroscience 10:509–16. [SBD]CrossRefGoogle Scholar
Bjorklund, A. & Stenevi, U. (1981) In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation. Brain Research 229:403–28. [SBD]CrossRefGoogle ScholarPubMed
Bjorklund, A. & Stenevi, U. (1984) Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries. Annual Review of Neuroscience 7:279308. [MLW]CrossRefGoogle ScholarPubMed
Bjorklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B. & Gage, F. H. (1983) Intracerebral grafting of neuronal cell suspensions. 1. Introduction and general methods of preparation. Acta Physiologica Scandinavica (Supplement 522:17. [aJDS]Google ScholarPubMed
Blunt, S. B., Jenner, P. & Marsden, C. D. (1991) The effect of chronic L-dopa treatment on the recovery of motor function in 6-hydroxydopamine-lesioned rats receiving ventral mesencephalic grafts. Neuroscience 4:453–64. [rDGS, KS-C]CrossRefGoogle Scholar
Blunt, S. B., Jenner, P. & Marsden, C. D. (1991) The effect of L-dopa and carbidopa treatment on the survival of rat fetal dopamine grafts assessed by tyrosine hydroxylase immunohistochemistry and [H-3] mazindol autoradiography. Neuroscience 43:95110. [SBD]CrossRefGoogle ScholarPubMed
Bobo, R. H., Laske, D., Akbasak, A. & Oldfield, E. H. (1992) Convectionenhanced drug distribution: A new method of drug delivery to brain (abstract). In: The 60th Annual Meeting of the American Association of Neurological Surgeons. [aEAN]Google Scholar
Bohn, M. C., Cupit, L., Marciano, F. & Gash, D. M. (1987) Adrenal grafts enhance recovery of striatal dopaminergic fibers. Science 237:913–16. [SBD, MLW]CrossRefGoogle ScholarPubMed
Bok, D. (1993) Retinal transplantation and gene therapy. Present realities and future possibilities. Investigative Opthalmology & Visual Science 34:473–76. [CMS]Google ScholarPubMed
Boksa, P. (1985) Acetylcholine synthesis by adult bovine adrenal chromaffin cell cultures. Journal of Neurochemistry 45:1254–61. [aJDS]CrossRefGoogle ScholarPubMed
Bolam, J. P., Freund, T. F., Björklund, A., Dunnett, S. B. & Smith, A. D. (1987) Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host neostriatum. Experimental Brain Research 68:131–46. [JPB]CrossRefGoogle ScholarPubMed
Bolvin, M. J., Giordani, B., Berent, S., Amato, D. A., Lehtinen, S., Koeppe, R. A., Buchtel, H. A., Foster, N. L. & Kuhl, D. E. (1992) Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex 28:231–39. [rDGS]Google Scholar
Bond, N. W., Walton, J. & Pruss, J. (1989) Restoration of memory following septo-hippocampal grafts: A possible treatment for Alzheimer's disease. Biological Psychology 28:6787. [NWB]CrossRefGoogle ScholarPubMed
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–96. [aJDS]CrossRefGoogle ScholarPubMed
Boyarsky, G., Ransom, B., Schlue, W.-R., Davis, M. B. E. & Boron, W. F. (1993) Intracellular pH regulation in single cultured astrocytes from rat forebrain. Glia 8:241–48. [rDGS]CrossRefGoogle ScholarPubMed
Braak, H. (1979) Pigment architecture of the human teleneephalic cortex: IV. Regio retrosplenialis. Cell Tissue Research 24:431–40. [YJL]CrossRefGoogle Scholar
Bradbury, E., Kershaw, T., Marchbanks, R. & Sinden, J. (in press) Astrocyte transplants alleviate lesion induced memory deficits independently of cholinergic recovery. Neuroscience. [arJDS]Google Scholar
Breakefield, X. O. & DeLuca, N. A. (1991) Herpes simplex virus for gene delivery to neurons. The New Biologist 3:203–18: [aEAN, LC]Google ScholarPubMed
Bregman, B. S. & Bernstein–Goral, H. (1991) Both regenerating and latedeveloping pathways contribute to transplant-induced anatomical plasticity after spinal cord lesions at birth. Experimental Neurology 112:4963. [AP]CrossRefGoogle ScholarPubMed
Bregman, B. S., Bernstein-Goral, H. & Kunkel–Bagden, E. (1991) CNS transplants promote anatomical plasticity and recovery of function after spinal cord injury. Restorative Neurology and Neuroscience 2:327–38. [AP]CrossRefGoogle ScholarPubMed
Bregman, B. S. & Kunkel-Bagden, E. (1989) Methods of determining development and recovery of motor function after spinal cord lesions and transplants in rats. In: Criteria for assessing recovery of function: Behavioral methods, ed. Brown, M. & Goldberger, M. E.American Paralysis Association. [AP]Google Scholar
Bregman, B. S., Kunkel-Bagden, E., Reier, P. J., Dai, H. N., Mcatee, M. & Gao, D. (1993) Recovery of function after spinal cord injury – mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Experimental Neurology 123:316. [AP]CrossRefGoogle ScholarPubMed
Brock, D. B., Guralnik, J. M. & Brody, J. A. (1990) Demography and epidemiology of aging in the United States. In: Handbook of the biology of aging, 3rd ed., ed. Schneider, E. L. & Rowe, J. W.. Academic Press. [MPL]Google Scholar
Brückner, M. & Arendt, T. (1992) Intracortical grafts of purified astrocytes ameliorate memory deficits in rat induced by chronic treatment with ethanol. Neuroscience Letters 141:251–54. [rDGS, aJDS]CrossRefGoogle ScholarPubMed
Brundin, P., Bjorklund, A. & Lindvall, O. (1990) Practical aspects of the use of human fetal brain tissue for intracerebral grafting grafting. Progress in Brain Research 82:707–14. [KAC]CrossRefGoogle ScholarPubMed
Brundin, P., Widner, H., Nilsson, O. G., Strecker, R. E. & Björklund, A. (1989) Intracerebral xenografts of dopamine neurons: The role of immunosuppression and the blood–brain barrier. Experimental Brain Research 75: 195207. [aDGS]CrossRefGoogle ScholarPubMed
Burtchaell, J. T. (1989) The use of aborted fetal tissue in research: A rebuttal. IRB: A Review of Human Subjects Research 11:912. [KAC]CrossRefGoogle ScholarPubMed
Butcher, L. L. & Woolf, N. J. (1984) Histochemical distribution of acetylcholinesterase in the central nervous system: Clues to the localization of cholinergic neurons. In: Handbook of chemical neuroanatomy, vol. 3: Classical transmitters and transmitter receptors in the CNS 3, Part II, ed. Bjorklund, A. & Hokfelt, T.. Elsevier. [aJDS]Google Scholar
Buzsaki, G., Bayards, F., Miles, R., Song, K. S. & Gage, F. H. (1989) The grafted hippocampus: An epileptic focus. Experimental Neurology 105:1022. [aDGS]CrossRefGoogle ScholarPubMed
Buzsaki, G., Bickford, R. G., Ponomareff, G., Thal, L. J., Mandel, R. & Gage, F. H. (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. Journal of Neuroscience 8:4007–26. [aJDS]CrossRefGoogle ScholarPubMed
Buzsaki, G. & Gage, F. H. (1988) Mechanisms of action of neural grafts in the limbic system. Canadian Journal of Neurological Sciences 15:99105. [aJDS]CrossRefGoogle ScholarPubMed
Buzsaki, G. & Gage, F. H. (1988) Neural grafts: Possible mechanisms of action. In: Neural plasticity: A lifespan approach, ed. Petit, T. L. & Ivy, G. O.. Liss. [MLW]Google Scholar
Buzsaki, G., Gage, F. H., Czopf, J. & Bjorklund, A. (1987) Restoration of rhythmic slow activity (theta) in the subcortically denervated hippocampus by fetal CNS transplants. Brain Research 400:334–47. [aJDS]CrossRefGoogle ScholarPubMed
Buzsaki, G., Wiesner, J., Henriksen, S. J. & Gage, F. H. (1989) Long–term potentiation of evoked and spontaneous neuronal activity in the grafted hippocampus. Experimental Brain Research 76:401–08. [aJDS]CrossRefGoogle ScholarPubMed
Calaminici, M., Abdulla, F. A., Sinden, J. D. & Stephenson, J. D. (1993) Direct evidence for axonal outgrowth from cholinergic grafts to cholinergically–deafferented rat cortex. Neuroreport 4:585–87. [aJDS]CrossRefGoogle ScholarPubMed
Carmichael, S. W., Wilson, R. J., Brimijoin, W. S., Melton, L. J. III, Okazaki, H., Yaksh, R. L., Ahlskog, J. E., Stoddard, S. L. & Tyce, G. M. (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism. New England Journal of Medicine 318:254. [aDCS]Google ScholarPubMed
Casamenti, F., Scali, C., Vannucchi, M. G., Bartolini, L., & Pepeu, G. (1993) Long-term ethanol-consumption by rats – effect on aeetylcholine-release in-vivo, choline-acetyltransferase activity, and behavior. Neuroscience 56:465–71. [aJDS]CrossRefGoogle ScholarPubMed
Cassel, J. C., Kelche, C., Majchrzak, M. & Will, B. E. (1992a) Factors influencing structure and function of intracerebral grafts in the mammalian brain: A review. Restorative Neurology and Neuroscience 4:6596. [aDGS]CrossRefGoogle ScholarPubMed
Cassel, J. C., Kelche, C., Neufang, B., Will, B. E., Hertting, G. & Jackisch, R. (1992b) Graft–derived cholinergic reinnervation of the hippocampus prevents a lasting increase of hippocampal noradrenaline concentration induced by septohippocampal damage in rats. Neuroscience Letters 138:3236. [aDGS]CrossRefGoogle ScholarPubMed
Cassel, J. C., Kelche, C., Peterson, G. M., Ballough, G. P., Goepp, I. & Will, B. (1991) Graft-induced behavioral recovery from subcallosal septohippocampal damage in rats depends on maturity stage of donor tissue. Neuroscience 45:571–86. [aJDS]CrossRefGoogle ScholarPubMed
Cassel, J. C., Neufang, B., Kelche, C., Aiple, F., Will, B. E., Hertting, G. & Rackisch, R. (1992c) Effects of septal and/or raphe cell suspension grafts on hippocampal choline acetyltransferase activity, high affinity synaptosomal uptake of choline and serotonin, and behavior in rats with extensive septohippocampal lesions. Brain Research 585:243–54. [aDGS]CrossRefGoogle ScholarPubMed
Chang, A. C., Triarhou, L. C., Alyea, C. J., Low, W. C. & Ghetti, B. (1989) Developmental expression of polypeptide PEP-19 in cerebellar cell suspensions transplanted into the cerebellum of pcd mutant mice. Experimental Brain Research 76:639–45. [PS]CrossRefGoogle ScholarPubMed
Chase, T. N., Mouradian, M. M. & Engber, T. M. (1993) Motor response complications and the function of striatal efferent systems. Neurology 43:523–27. [TS]Google ScholarPubMed
Chatterjee, A., Morris, M., Bowers, D., Willamson, D., Doty, L. & Heilman, K. (1993) Cholinergic treatment of an amnesic man with a basal forebrain lesion: Theoretical implications. Journal of Neurology, Neurosurgery, and Psychiatry 56:1282–89. [BA]CrossRefGoogle Scholar
Chen, M., Harvey, A. R. & Dyson, S. E. (1991) Regrowth of lesioned retinal axons associated with the transplantation of Schwann cells to the brachial region of the rat optic tract. Restorative Neurology and Neuroscience 2:233–48. [RHB]CrossRefGoogle Scholar
Chino, Y. M., Kaas, J. H., Smith, E. L. III, Langston, A. L. & Cheng, H. (1992) Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Research 32:789–96. [BBS]CrossRefGoogle ScholarPubMed
Chiocca, E. A., Chio, B. B., Cai, W., DeLuca, N. A., Schaffer, P. A., DiFiglia, M., Breakefield, X. O. & Martuza, F. L. (1990) Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biologist 2:739–46. [arEAN]Google ScholarPubMed
Clarke, D. J. (1985) Cholinergic innervation of the rat dentate gyrus: An immunocytochemical and electron microscopical study. Brain Research 36:349–54. [aJDS]CrossRefGoogle Scholar
Clarke, D. J., Brundin, P., Strecker, R. E., Nilsson, O. G., Björklund, A. & Lindvall, O. (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Experimental Brain Research 73:115–26. [JPB]CrossRefGoogle Scholar
Clarke, D. J. & Dunnett, S. B. (1986) Ultrastructural organisation of the choline-acetyltransferase-immunoreactive fibres innervating the neocortex from embryonic ventral forebrain grafts. Journal of Comparative Neurology 250:192205. [aJDS]CrossRefGoogle ScholarPubMed
Clarke, D. J., Gage, F. H. & Björklund, A. (1986) Formation of cholinergic synapses by intrahippocampal septal grafts as revealed by cholineacetyltransferase immunocytochemistry. Brain Research 369:151–62. [aJDS]CrossRefGoogle Scholar
Clarke, D. J., Nilsson, O. C., Brundin, P. & Björklund, A. (1990) Synaptic connections formed by grafts of different types of cholinergic neurons in the host hippocampus. Experimental Neurology 107:1122. [aDGS, aJDS]CrossRefGoogle ScholarPubMed
Clow, D. W. & Jhamandas, K. (1989) Characterization of L–glutamate action on the release of endogenous dopamine from the rat caudate–putamen. Journal of Pharmacology and Experimental Therapy 248:722–28. [JPB]Google ScholarPubMed
Coffey, P. J., Perry, V. H., Allen, Y., Sinden, J. & Rawlins, J. N. P. (1988) Ibotenic acid induced demyelination in the central nervous system: A consequence of a local inflammatory response. Neuroscience Letters 84:178–84. [aJDS]CrossRefGoogle ScholarPubMed
Collerton, D. (1986) Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19:128. [aJDS]CrossRefGoogle ScholarPubMed
Collier, T. J., Gash, D. M., Bruemmer, V. & Sladek, J. R. Jr, (1985) Impaired regulation of arousal in old age and the consequences for learning and memory: Replacement of brain norepinephrine via neuron transplants improves memory performance in aged F344 rat. In: Homeostatic function and aging, ed. Davis, B. B. & Wood, W. G.. Raven Press. [aDGS]Google Scholar
Collier, T. J., Gayle, D. & Sladek, J. R. Jr, (1988) Transplantation of norepinephrine neurons into aged rats improves performance of a learned task. Brain Research 448:7787. [aDGS]CrossRefGoogle ScholarPubMed
Colombo, P., Davis, H. P. & Volpe, B. T. (1989) Spatial and tactile memory impairments iu rats with dorsal caudate nucleus lesions are affected by preoperative training. Behavioral Neuroscience 103:1742–50. [HPD]CrossRefGoogle Scholar
Comelli, M. C., Guidolin, D., Seren, M. S., Zanoni, R., Canella, R., Rubini, R. & Manev, H. (1993) Time course, localization and pharmacological modulation of immediate early inducible genes, brain-derived neurotrophic factor and trkB messenger RNAs in the rat brain following photochemical stroke. Neuroscience 55:473–90. [rJDS]CrossRefGoogle ScholarPubMed
Cook, D. & Kesner, R. P. (1988) Caudate nucleus and memory for egocentric localization. Behavioral and Neural Biology 49:332–43. [rJDS]CrossRefGoogle ScholarPubMed
Cooper, I. S. (1956) Neurosurgical alleviation of Parkinsonism. Charles C. Thomas. [aDGS]Google ScholarPubMed
Cooper, I. S. (1961) Parkinsonism-its medical and surgical therapy. Charles C. Thomas. [aDCS]CrossRefGoogle Scholar
Cooper, I. S. (1969) Involuntary movement disorders. Harper, Hoeber Medical Division. [aDGS]Google Scholar
Corey, L. & Spear, P. G. (1986) Infections with herpes simplex viruses. New England Journal of Medicine 314:749–56. [aEAN]CrossRefGoogle ScholarPubMed
Cork, L. C., Munnell, J. F., Lorenz, M. D., Murphy, J. V., Baker, H. J. & Rattazzi, M. C. (1977) GM ganglioside lysosomal storage disease in cats with B-Hexosaminidase deficiency. Science 196:1014–17. [aEAN]CrossRefGoogle Scholar
Cotman, C. W. & Kesslak, J. P. (1988) The role of trophic factors in behavioral recovery and integration of transplants. In: Transplantation into the mammalian CNS, ed. Dunnett, S. B. & Richards, S.-J.. Elsevier, . [aDCS]Google Scholar
Cotman, C. W., Nieto-Sampedro, N. & Whittemore, S. R. (1984) Relationships between neurotrophic factors and transplant-host interactions. In: Neural grafting in the mammalian CNS, ed. Björklund, A. & Stenevi, U.. Elsevier, . [arDGS]Google Scholar
Cotman, C. W., Nieto-Sampedro, N. & Whittemore, S. R. (1985) Relationships between neurotrophic factors and transplant-host integration. In: Neural grafting in the mammalian CNS, ed. Björkland, A. & Stenevi, U.. Elsevier Science. [rDGS]Google Scholar
Coyle, J. T., Price, D. L. & Delong, M. R. (1983) Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184–90. [aDGS]CrossRefGoogle ScholarPubMed
Craik, F. I. M.Jennings, J. M. (1992) Human memory. In: The handbook of aging and cognition, ed. Craik, F. I. M. & Salthouse, T. A.. Erlbaum. [MPL]Google Scholar
Cramon, D., Markowitsch, H. & Schuri, U. (1993) The possible contribution of the septal region to memory. Neuropsychologia 31:1159–80. [BA]CrossRefGoogle Scholar
Crutcher, K. A. (1993) Fetal tissue research: The cutting edge? Linacre Quarterly 6:1019. [KAC]CrossRefGoogle Scholar
Crutcher, K. A., Anderton, B. H., Barger, S. W., Ohm, T. G.Snow, A. D. (1993) Cellular and molecular pathology in Alzheimer's disease. Hippocampus 3:271–88. [EJM]CrossRefGoogle ScholarPubMed
Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H. & Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 256:1549–52. [aEAN]CrossRefGoogle ScholarPubMed
Curran, E. J. & Becker, J. B. (1991) Changes in blood–brain barrier permeability are associated with behavioral and neurochemical indices of recovery following intraventricular adrenal medulla grafts in an animal model of Parkinson's disease. Experimental Neurology 114:184–92. [WJF]CrossRefGoogle Scholar
Dalrymple-Alford, J. C., Kelche, C., Cassel, J. C., Toniolo, G., Pallage, V. & Will, B. E. (1988) Behavioral deficits after intrahippocampal fetal septal grafts in rats with selective fimbria–fornix lesions. Experimental Brain Research 69:545–58. [aDGS]CrossRefGoogle ScholarPubMed
Damasio, A., Graff-Radford, N., Eslinger, P., Damasio, H. & Kassell, N. (1985) Amnesia following basal forebrain lesions. Archives of Neurology 42:263–71. [BA]CrossRefGoogle ScholarPubMed
Daniloff, J. K., Bodony, R. P., Low, W. C. & Wells, J. (1985) Cross–species embryonic septal transplants: The restoration of conditioned learning behavior. Brain Research 346:176–80. [YJL]CrossRefGoogle ScholarPubMed
Das, G. D. (1981) Neural transplants in the spinal cord of the adult rats. Anatomical Record 199:64A. [AP]Google Scholar
Das, G. D. (1983a) Neural Transplantation in the spinal cord of the adult mammal. In: Spinal cord reconstruction, ed. Kao, C. C., Bunge, R. P., & Reier, P. J.. Raven Press. [AP]Google Scholar
Das, G. D. (1983b) Neural transplantation in the spinal cord of the adult rats. Conditions, survival, cytology and connectivity of the transplants. Journal of Neurological Science 52:191210. [AP]CrossRefGoogle Scholar
Date, I., Felten, D. L. & Felten, S. Y. (1990a) Long-term effect of MPTP in the mouse brain in relation to aging: Neurochemical and immunocytochemical analysis. Brain Research 519:266–76. [DLF]CrossRefGoogle ScholarPubMed
Date, I., Felten, S. Y. & Felten, D. L. (1989) Exogenous GM1 gangliosides induce partial recovery of the nigrostriatal dopaminergic system in MPTP-treated young mice but not in aging mice. Neuroscience Letters 106:282–86. [DLF]CrossRefGoogle ScholarPubMed
Date, I., Felten, S. Y.Felten, D. L. (1990b) Limited recovery of striatal dopaminergic fibers by adrenal medullary grafts in MPTP–treated aging mice. Experimental Neurology 107:197207. [DLF]CrossRefGoogle ScholarPubMed
Date, I., Felten, S. Y.Felten, D. L. (1991a) Cografts of adrenal medulla with peripheral nerve enhance the survivability of transplanted adrenal chromaffin cells as well as recovery of the host nigrostriatal dopminergic system in MPTP-treated young mice. Brain Research 537:3339. [DLF]CrossRefGoogle Scholar
Date, I., Felten, S. Y.Felten, D. L. (1991b) The nigrostriatal dopaminergic system in MPTP-treated mice shows more prominent recovery by a syngeneic adrenal medullary graft than by an allogeneic or xenogeneic graft. Brain Research 545:191–98. [DLF]CrossRefGoogle ScholarPubMed
Date, I., Felten, S. Y., Olschowka, J. A.Felten, D. L. (1990b) Limited recovery of striatal dopaminergic fibers by adrenal medullary grafts in MPTP–treated aging mice. Experimental Neurology 17:197–27. [KS-C]CrossRefGoogle Scholar
Date, I., Notter, M. F. D., Felten, S. Y. & Felten, D. L. (1990c) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic fibroblast growth factor (aFGF). Brain Research 526:156–60. [DLF]CrossRefGoogle Scholar
Date, I., Notter, M. F. D., Felten, S. Y. & Felten, D. L. (1991c) Stereotaxic injection of GDla ganglioside induces limited recovery of the nigrostriatal dopaminergic system in MPTP–treated aging mice. Journal of Neuroscience Research 28:525–30. [DLF]CrossRefGoogle Scholar
Davidson, B. L., Allen, E. D., Kozarsky, K. F., Wilson, J. M. & Roessler, B. J. (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Cenetics 3:219– 23. [arEAN]CrossRefGoogle Scholar
Davidson, B. L., Doran, S. E., Sewach, D. S., Latta, J. M., Hartman, J. W. or Roessler, B. J. (1994) Expression of Escherichia coli–galactosidase and rat HPRT in the CNS of Macaco mulatto following adenoviral mediated gene transfer. Experimental Neurology 125:258–67. [rEAN]CrossRefGoogle Scholar
Davidson, I. & Stow, N. D. (1985) Expression of an immediate early polypeptide and activation of a viral origin of DNA replication in cells containing a fragment of herpes simplex virus DNA. Virology 141:7788. [aEAN]CrossRefGoogle ScholarPubMed
Davis, H. P. & Volpe, B. T. (1990) Memory performance after ischemic or neurotoxin damage of the hippocampus. In: The biology of memory, ed. Squire, L. R.Lindenlaub, E.. Stuttgart, , New York: Symposia Medica Hoechst, vol. 23, F. K. Schattauer Verlag. [arJDS, HPD]Google Scholar
Dawe, G. S., Gray, J. A., Sinden, J. D., Stephenson, J. D. & Segal, M. (1993) Evidence from extracellular recordings for the connectivities of fetal dentate gyrus and CA1 hippocampal subfield transplants to the colchicine–lesioned rat dentate gyrus. Brain Research 625:6374. [arJDS]CrossRefGoogle Scholar
Dawson, V. L., Gage, F. H., Hunt, M. A. & Wamsley, J. K. (1989) Normalization of subtype–specific muscarinic receptor binding in the denervated hippocampus by septodiagonal band grafts. Experimental Neurology 106:115–24. [aJDS]CrossRefGoogle ScholarPubMed
Decker, M. W. & McGaugh, J. L. (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7:151–68. [aDGS]CrossRefGoogle ScholarPubMed
DeKosky, S. & Scheff, S. (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. Annals of Neurology 27:457–64. [BA]CrossRefGoogle ScholarPubMed
del, Cerro M., Notter, M., Siegel, G., Lazar, E., Chader, G. & del, Cerro C. (1992) Intraretinal xenografts of differentiated human retinoblastoma cells integrate with the host retina. Brain Research 583:1222. [GMS]Google Scholar
den Hartog Jager, W. A. (1970) Histochemistry of adrenal bodies in Parkinson's disease. Archives of Neurology 23:528–33. [aDGS]CrossRefGoogle Scholar
Deutsch, J. A.The cholinergic synapse and the site of memory. Science 174:788–94. [HPD]CrossRefGoogle Scholar
DiStefano, P. S., Friedman, B., Radziejieski, A. C., Boland, P., Schick, C. M., Lindsay, R. M. & Wiegand, S. J. (1992) The neurotrophin BDNF, NT–3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8:983–93. [EJM]CrossRefGoogle ScholarPubMed
Dienal, G. (1984) Regional accumulation of calcium in post ischemic rat brain. Journal of Neurochemistry 43:913–25. [HPD]CrossRefGoogle Scholar
Dobkin, B. & Hanlon, R. (1993) Dopamine agonist treatment of antegrade amnesia from a mediobasal forebrain injury. Annals of Neurology 33:313–16. [BA]CrossRefGoogle ScholarPubMed
Dobson, A. T., Margolis, T. P., Sedarati, F., Stevens, J. G. & Feldman, L. T. (1990) A latent, nonpathogenic HSV–1 derived vector stably expresses-galactosidase in mouse neurons. Neuron 5:353–60. [arEAN]CrossRefGoogle Scholar
Doering, L. C. (1992) Peripheral nerve segments promote consistent longterm survival of adrenal medulla transplants in the brain. Experimental Neurology 118:253–60. [aDGS]CrossRefGoogle ScholarPubMed
Doering, L. C. & Chang, P. L. (1991) Expression of a novel gene produced by transplants of genetically modified primary fibroblasts in the central nervous system. Journal of Neuroscience Research 29:292–98. [RHB]CrossRefGoogle Scholar
Doucet, G., Murata, Y., Brundin, P., Bosler, O., Mons, N., Geffard, M., Ouimet, C. C. & Bjorklund, A. (1989) Host afferent into intrastriatal transplants of fetal ventral mesencephalon. Experimental Neurology 106:119. [JPB]CrossRefGoogle ScholarPubMed
Drumm, D., Greene, K., Marciano, F., Prigatano, G. & Spetzler, R. (1993) Neurobehavioral deficits following rupture of anterior communicating artery (ACoA) aneurysms: The ACoA aneurysm syndrome. BNI Quarterly 9:212. [BA]Google Scholar
Duan, W. -M., Widner, H., Bjorklund, A. & Brundin, P. (1993) Sequential intrastriatal grafting of allogeneic embryonic dopamine–rich neuronal tissue in adult rats: Will the second graft be rejected? Neuroscience 57:261–74. [rDGS]CrossRefGoogle ScholarPubMed
Dubovik, V., Faigon, M., Feldon, J. & Michaelson, D. M. (1993) Decreased density of forebrain cholinergic neurons in experimental autoimmune dementia. Neuroscience 56:7582. [aJDS]CrossRefGoogle ScholarPubMed
Dunbar, G. L. & Stein, D. G. (1988) Gangliosides and functional recovery from brain injury. In: Pharmacological approaches to the treatment of brain and spinal cord injury, ed. Stein, D. G. & Sabel, B.. Plenum Press. [aDGS]Google Scholar
Duncan, I. D., Hammang, J. P., Jackson, K. F., Wood, P. M., Bunge, R. P. & Langford, L. (1988) Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin–deficient rat. Journal of Neurocytology 17:351–6. [RHB]CrossRefGoogle ScholarPubMed
Duncan, I. D., Paino, C., Archer, D. R. & Wood, P. M. (1992) Functional capacities of transplanted cell–sorted adult oligodendrocytes. Developmental Neuroscience 14:114–22. [RHB]CrossRefGoogle ScholarPubMed
Dunnett, S. B. (1985) Comparative effects of cholinergic drugs and lesions of the nucleus basalis and fimbria–fomix on delayed matching in rats. Psychopharmacology 87:357–63. [aJDS]CrossRefGoogle Scholar
Dunnett, S. B. (1990) Neural transplantation in animal models of dementia. European Journal of Neuroscience 2:567–87. [aJDS]CrossRefGoogle ScholarPubMed
Dunnett, S. B. (1991) Neural transplants as a treatment for Alzheimer's disease? Psychological Medicine 21:825–30. [SBD]CrossRefGoogle ScholarPubMed
Dunnett, S. B., Badman, F., Rogers, D. C., Evenden, J. L. & Iversen, S. D. (1988) Cholinergic grafts in the neocortex or hippocampus of aged rats: Reduction of delay–dependent deficits in the delayed non–matching to position task. Experimental Neurology 102:5764. [arJDS]CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Bjorklund, A. (1987) Mechanisms of function of neural grafts in the adult mammalian brain. Journal of Experimental Biology 132:265–89. [aJDS, MLW]CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Bjorklund, A., eds. (1994) Functional neural transplantation. Raven Press. [aJDS]Google ScholarPubMed
Dunnett, S. B., Bjorklund, A., Stenevi, U. & Iversen, S. D. (1981) Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. 1. Unilateral lesions. Brain Research 215:147–61. [aJDS]CrossRefGoogle Scholar
Dunnett, S. B., Everitt, B. J. & Robbins, T. W. (1991) The basal forebraincortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions. Trends in Neuroscience 14:494–51. [arJDS, SBD]CrossRefGoogle ScholarPubMed
Dunnett, S. B., Gage, F. H., Bjorkland, A., Stenevi, U., Low, W. C. & Iversen, S. D. (1984) Hippocampal deafferentation: Transplant–derived reinnervation and functional recovery. Ada Psychiatrica Scandinavica 313:4656. [YJL]CrossRefGoogle ScholarPubMed
Dunnett, S. B., Low, W. C., Iversen, S. D., Stenevi, U. & Bjorklund, A. (1982) Septal transplants restore maze learning in rats. Brain Research 251:335–48. [aDGS, NWB, YJL]CrossRefGoogle ScholarPubMed
Dunnett, S. B. or Mayer, E. (1992) Neural grafts, growth factors and trophic mechanisms of recovery. In: Neurodegeneration, ed. Hunter, A. J.Clarke, M.. Academic Press. [SBD]Google Scholar
Dunnett, S. B., Ryan, C. N., Levin, P. D., Reynolds, M. & Bunch, S. T. (1987) Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behavioral Neuroscience 101:489. [SBD]CrossRefGoogle ScholarPubMed
Dunnett, S. B., Toniolo, G., Fine, A., Ryan, C. N., Bjorklund, A. & Iversen, S. D. (1985) Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis – II. Sensorimotor and learning impairments. Neuroscience 16:787–97. [aDGS, aJDS]CrossRefGoogle Scholar
Dunnett, S. B., Whishaw, I. Q., Bunch, S. T. & Fine, A. (1986) Acetylcholine–rich neuronal grafts in the forebrain of rats: Effects of environmental enrichment, neonatal noradrenaline depletion, hostc transplantation site and regional source of embryonic donor cells on graft size and acetyleholinesterase –positive fibre outgrowth. Brain Research 378:357–73. [arJDS]CrossRefGoogle Scholar
Dunnett, S. B., Whishaw, I. Q., Rogers, D. C. & Jones, G. H. (1987) Dopamine–rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Research 415:6378. [aJDS]CrossRefGoogle Scholar
During, M. J., Freese, A., Deutch, A. Y., Kibat, P. G., Sabel, B. A., Langer, R. & Roth, R. H. (1992) Biochemical and behavioral recovery in a rodent model of Parkinson's disease following stereotactic implantation of dopamine-containing liposomes. Experimental Neurology 115:193–9. [rEAN]CrossRefGoogle Scholar
Dutar, P., Roscol, O., Jobert, A. & Lamour, Y. (1986) Comparison of septohippocampal with basalo–cortical projection neurons in the rat: An electrophysiological approach. Neuroscience Letters 63:8690. [aJDS]CrossRefGoogle ScholarPubMed
Eccles, J. C., Eccles, R. M. & Fatt, P. (1956) Pharmacological investigations on a central synapse operated by acetylcholine. Journal of Physiology (London) 131:154–69. [aJDS]CrossRefGoogle ScholarPubMed
Eckenstein, F. P., Baughman, R. W. & Quinn, J. (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–74. [YJL]CrossRefGoogle ScholarPubMed
Eichenbaum, H., Otto, T. & Cohen, N. J. (1994) Two distinctions of hippocampal–dependent memory processing. Behavioral and Brain Sciences 17(3):449–72. [arJDS]CrossRefGoogle Scholar
Eichenbaum, H., Stewart, C. & Morris, R. G. M. (1991) Hippocampal representation in place learning. Journal of Neuroscicnce 10:3531–42. [rJDS]CrossRefGoogle Scholar
Eide, F. F., Lowenstein, D. H. & Reichardt, L. F. (1993) Neurotrophins and their receptors – current concepts and implications for neurologic disease. Experimental Neurology 121:200214. [rDGS, EJM]CrossRefGoogle ScholarPubMed
Emerich, D. F., Black, B. A., Kesslak, J. P., Cotman, C. W. & Walsh, T. J. (1992) Transplantation of fetal cholinergic neurons into the hippocampus attenuates the cognitive and neurochemical deficits induced by AF64A. Brain Research Bulletin 28:219–26. [aJDS]CrossRefGoogle ScholarPubMed
Emmett, C. J., Lawrence, J. M. & Seeley, P. J. (1988) Visualisation of migration of transplanted astrocytes using polystyrene microspheres. Brain Research 447:223–33. [aJDS]CrossRefGoogle ScholarPubMed
Eriksdotter-Nilsson, M., Skirboll, S., Ebendal, T., Hersh, L., Grassi, J., Massoulie, J. & Olson, L. (1989) NGF treatment promotes development of basal forebrain tissue grafts in the anterior chamber of the eye. Experimental Brain Research 74:8998.[aJDS]CrossRefGoogle ScholarPubMed
Ernfors, P., Ebendal, T., Olson, L., Mouton, P., Stromberg, I. & Persson, H. (1989) A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proceedings of the National Academy of Sciences 86:4756–60. [aJDS]CrossRefGoogle ScholarPubMed
Escobar, M., Fernandez, J., Guevara-Aguilar, R. & Bermudez-Rattoni, F. (1989) Fetal brain grafts induce recovery of learning deficits and connectivity in rats with gustatory neocortex lesion. Brain Research 478:368–74. [aJDS]CrossRefGoogle ScholarPubMed
Etherington, R., Mittleman, G. & Robbins, T. W. (1987) Comparative effects of nucleus basalis and fimbria-fornix lesions on delayed matching and alternation tests of memory. Neurosdence Research Communications 1:135–43. [aJDS]Google Scholar
Everitt, B. J., Robbins, T. W., Evenden, J. L., Marston, H. M., Jones, G. H. & Sirkia, T. E. (1987) The effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination: Implications for cholinergic hypotheses of learning and memory. Neuroscience 22:441–69. [aJDS]CrossRefGoogle ScholarPubMed
Everitt, B. J., Sirkia, T. E., Roberts, A. C., Jones, G. H. & Robbins, T. W. (1988) Distribution and some projections of cholinergic neurones in the brain of the common marmoset, Callithrix jacchus. Journal of Comparative Neurology 271:533–58. [aJDS, RMR]CrossRefGoogle ScholarPubMed
Fahn, S. (1992) A pilot trial of high-dose alpha-tocopherol and aseorbate in early Parkinson's disease. Annals of Neurology (supplement) 32:S128–32. [rDCS]CrossRefGoogle Scholar
Fantie, B. & Kolb, B. (1993) Functional consequences of transplantation of frontal neocortex vary with age of donor tissue and behavioral task. Restorative Neurology and Neuroscience 5:141–49. [SBD]CrossRefGoogle ScholarPubMed
Federoff, H. J., Geschwind, M. D., Geller, A. I. & Kessler, J. A. (1992) Expression of NGF in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic neurons. Proceedings of the National Academy of Sciences USA 89:1636–40. [aEAN]CrossRefGoogle Scholar
Feeney, D. M. & Sutton, R. L. (1987) Pharmacotherapy for recovery of function after brain injury. Critical Reviews in Neurobiology 3:135–97. [aDGS]Google ScholarPubMed
Felten, D. L., Felten, S. Y., Fuller, R. W., Romano, T. D., Smalstig, E. G., Wong, D. T. & Clemens, J. A. (1992a) Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged Fischer 344 rats. Neurobiology of Aging 13:339–51. [DLF]CrossRefGoogle ScholarPubMed
Felten, D. L., Felten, S. Y., Steece-Collier, K., Date, I. & Clemens, J. A. (1992b) Age-related decline in the dopaminergic nigrostriatal system: The oxidative hypothesis and protective strategies. Annals of Neurology 32:S133–36. [DLF]CrossRefGoogle ScholarPubMed
Ferrari, S., Donelli, A., Manfredini, R., Sarti, M., Roncaglia, R., Tagliafico, E., Rossi, E., Torelli, G. & Torelli, U. (1990) Differential effects of c-myb and c-fes antisense oligodeoxynucleotides on granulocytic differentiation of human myeloid leukemia HL60 cells. Cell Growth and Differentiation 1:543–48. [LC]Google ScholarPubMed
Festing, M. F. W. (1986) Inbred strains. In: The laboratory rat, ed. Baker, H. J., Lindsey, J. R. & Weisbroth, S. H.. Academic Press. [JPB]Google Scholar
Fiandaca, M. S., Kordower, J. H., Hansen, J. T., Jiao, S.-S. & Gash, D. M. (1988) Adrenal medullary autografts into the basal ganglia of Cebus monkeys: Injury-induced regeneration. Experimental Neurology 102:7691. [WJF]CrossRefGoogle ScholarPubMed
Fibiger, H. (1991) Cholinergic mechanisms in learning, memory, and dementia: A review of recent evidence. Trends in Neuroscience 14:220–23. [BA]CrossRefGoogle ScholarPubMed
Field, P. M., Seeley, P. J., Frotscher, M. & Raisman, G. (1991) Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons. Neuroscience 41:713–27.[arJDS]CrossRefGoogle ScholarPubMed
Fine, A. (1988) The ethics of fetal tissue transplants. Hastings Center Report 18(3):58. [KAC]CrossRefGoogle ScholarPubMed
Fine, A. (1990) Transplantation of adrenal tissue into the central nervous system. Brain Research Reviews 15:121–33. [aDGS]CrossRefGoogle ScholarPubMed
Fine, A., Dunnett, S. B., Björklund, A. & Iversen, S. D. (1985) Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer's disease. Proceedings of the National Academy of Sciences 82:5227–30. [aJDS]CrossRefGoogle Scholar
Fink, D., Lawrence, R., Sternberg, L., Weber, P., Marina, M., Goins, W. & Glorioso, J. (1992) In vivo expression of-galactosidase in hippocampal neruons by HSV- mediated gene transfer. Human Gene Therapy 3:1119. [aEAN]CrossRefGoogle Scholar
Fisher, L. J., Jinnal, A., Kale, L. D., Higgins, G. A. & Gage, F. H. (1991a) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6:371–80. [LC]CrossRefGoogle ScholarPubMed
Fisher, L. J., Young, S. J., Tepper, J. M., Grobes, P. M. & Gage, F. H. (1991b) Electrophysiological characteristics of cells within mesencephalon suspension grafts. Neuroscience 40:109–22. [JPB]CrossRefGoogle ScholarPubMed
Fleischman, R. A. (1991) Southwestern internal medicine conference: Human gene therapy. American Journal of Medical Science 301:353–63. [aEAN]CrossRefGoogle Scholar
Flores, E. P., Low, W. C. & Hall, W. A. (1994) Growth inhibition of glioma and medulloblastoma cells and down regulation of PDGF receptors with antisense oligonucleotides to c-myb oncogene. Proceedings of Congress of Neurological Surgeons (in press). [LC]Google Scholar
Flynn, D. D. & Mash, D. C. (1986) Characterisation of L-[3H] nicotine binding in human cerebral cortex: Comparison between Alzheimer's disease and the normal. Journal of Neurochemistry 47:1948–86. [aJDS]CrossRefGoogle ScholarPubMed
Forno, L. S. & Langston, J. W. (1991) Unfavorable outcome of adrenal medullary transplant for Parkinson's disease. Acta Neuropathologica 81:691–94. [aDGS]CrossRefGoogle ScholarPubMed
Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J.-X., Lone, T., Zhang, Y.-B., Snyder, J. A., Wells, T. H., Ramig, L. O., Thompson, L., Mazziotta, J. C., Huang, S. C., Grafton, S. T., Brooks, D., Sawle, G., Schroter, G. & Ansari, A. A. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. New England Journal of Medicine 327:1549–55. [aDGS, WJF]CrossRefGoogle ScholarPubMed
Freed, W. J. (1985) Repairing neuronal circuits with brain grafts: Where can brain grafts be used as a therapy? Neurobiology of Aging 6:153–56. [WJF]CrossRefGoogle Scholar
Freed, W. J. (1990) Fetal brain grafts and Parkinson's disease. Science 250:1434–35. [aDGS, WJF]CrossRefGoogle Scholar
Freed, W. J. (1991) Substantia nigra grafts and Parkinson's disease: From animal experiments to human therapeutic trials. Restorative Neurology and Neuroscience 3:109–34. [aDGS, WJF]CrossRefGoogle ScholarPubMed
Freed, W. J., Morihisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A. & Wyatt, A. J. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature (London) 292:351–52. [aDGS]CrossRefGoogle ScholarPubMed
Freed, W. J., Poltorak, M. & Becker, J. B. (1990) Intracerebral adrenal medulla grafts: A review. Experimental Neurology 110:139–66. [aDGS, WJF]CrossRefGoogle ScholarPubMed
Freeman, J. N. III, Baisden, R. H. & Woodruff, M. L. (1993) Stereotaxic implants of Ammon's horn into trimethyltin-treated rats reduce arm re-entries in an externally cued radial maze. Abstracts of the International Behavioral Neuroscience Society 2:44. [MLW]Google Scholar
Freese, A., Geller, A. I. & Neve, R. (1990) HSV-1 vector-mediated neuronal gene delivery. Strategies for molecular neuroscience and neurology. Biochemical Pharmacology 40:2189–99. [aEAN]CrossRefGoogle ScholarPubMed
Freiden, P. M., Walus, L. R., Watson, P., Doctrow, S. R., Kozarich, J. W., Backman, , Bergman, C. H., Hoffer, B., Bloom, F. & Granholm, A.-C. (1993) Blood brain barrier penetration and in vivo activity of an activity of an NGF conjugate. Science 259:372–77.[EJM]Google Scholar
Freund, T. F. & Antal, M. (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–73. [aJDS]CrossRefGoogle ScholarPubMed
Freund, T. F. & Meskenaite, V. (1992) Aminobutyrie acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proceedings of the National Academy of Sciences USA 89:738–42. [aJDS]CrossRefGoogle ScholarPubMed
Friedmann, T. (1989) Progress toward human gene therapy. Science 244:1275–81. [aEAN]CrossRefGoogle ScholarPubMed
Friend, S., Horowitz, J., Gerber, M., Wang, X., Bogenmann, E., Li, F. & Weinberg, R. (1987) Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: Organization of the sequence and its encoded protein. Proceedings of the National Academy of Sciences USA 84:9059–63. [CMS]CrossRefGoogle ScholarPubMed
Frim, D. M., Uhler, T. A., Short, M. P., Ezzedine, Z. D., Klagsbrun, M., Breakefield, X. O. & Isacson, O. (1993) Effects of biologically delivered NGF, BDNF and bFGF on striatal excitotoxic lesions. Neuroreport 4:367–70. [rJDS]CrossRefGoogle ScholarPubMed
Frotscher, M. & Naumann, T. (1992) Septohippocampal cholinergic neurons: Synaptic connections and survival following axotomy. Reviews in the Neurosciences 3:233–48. [aJDS]Google Scholar
Fukuchi, K. I., Ogburn, C. E., Smith, A. C., Kunkel, D. D., Furlong, C. E., Deeb, S. S., Nochlin, D., Sumi, S. M. & Martin, G. M. (1993) Transgenic animal models for Alzheimer's disease. Annals of the New York Academy of Sciences 695:217–23. [rJDS]CrossRefGoogle ScholarPubMed
Fung, Y., Tang, A., Murphree, A., Zhang, F., Qui, W., Wang, S., Shi, X., Lee, E. & Lee, W. (1988) Suppression of the neoplastic phenotype by replacement of the Rb gene in human cancer cells. Science 242:1563–66. [GMS]Google Scholar
Fusco, M., Vantini, G., Schiavo, N., Zanotti, A., Zanoni, R., Facci, L. & Skaper, S. D. (1993) Gangliosides and neurotrophic factors in neurodegenerative diseases: From experimental findings to clinical perspectives. Annals of the New York Academy of Sciences 695:314–17. [rDGS]CrossRefGoogle ScholarPubMed
Gage, F. H. (1993) Fetal implants put to the test. Nature 361:405–6. [aDGS]CrossRefGoogle ScholarPubMed
Gage, F. H. & Björklund, A. (1986) Enhanced graft survival in the hippocampus following selective denervation. Neuroscience 17:8998. [aJDS]CrossRefGoogle ScholarPubMed
Gage, F. H., Björklund, A., Stenevi, U., Dunnett, S. B. & Kelly, P. A. T. (1984) Intrahippocampal grafts ameliorate learning impairments in aged rats. Science 225:533–36. [aDGS, aJDS]CrossRefGoogle ScholarPubMed
Gage, F. H. & Fisher, L. J. (1991) Intracerebral grafting: A tool for the neurobiologist. Neuron 6:112. [aJDS]CrossRefGoogle ScholarPubMed
Gage, F. H., Fisher, L. J., Hyder, A. J., Rosenberg, M. B., Tuszynski, M. H. & Friedmann, T. (1990) Grafting genetically modified cells to the brain: Conceptual and technical issues. Progress in Brain Research 90:110. [RHB]Google Scholar
Gage, F. H., Kawaja, M. D. & Fisher, L. J. (1991) Genetically modified cells: Applications for intracerebral grafting. Trends in Neuroscience 14:328–33. [arJDS]CrossRefGoogle ScholarPubMed
Gage, S. L., Keim, S. R. & Loe, W. C. (1994) Nerve cells in the medial septal nucleus and diagonal band of Broca innervate the retrosplenial cortex of the rat via the fornix pathway. Experimental Neurology. In press. [YJL]Google Scholar
Gallyas, F., Hsu, M. & Buzsaki, G. (1992) Delayed degeneration of the optic tract and neurons in the superior colliculus after forebrain ischemia. Neuroscience Letters 144:177–79. [HPD]CrossRefGoogle ScholarPubMed
Garofalo, L., Ribiero-da-Silva, A. & Cuello, A. C. (1993) Potentiation of nerve growth factor-induced alterations in cholinergic fibre length and presynaptic terminal size in cortex of lesioned rats by the monosialoganglioside GM1. Neuroscience 57:2140. [aJDS]CrossRefGoogle ScholarPubMed
Geller, A. I. & Breakefield, X. O. (1988) A defective HSV-1 vector expresses Escherichia coli -galactosidase in cultured peripheral neurons. Science 241:1667–69. [aEAN]Google ScholarPubMed
Geller, A. I., During, M. J., Haycock, J. W., Freese, A. & Neve, R. (1993) Long-term increases in neurotransmitter release from neuronal cells expressing a constitutively active adenylate cyclase from a herpes simplex virus type 1 vector. Proceedings of the National Academy of Sciences USA 90:7603–7. [aEAN]CrossRefGoogle ScholarPubMed
Geller, A. I., During, M. J. & Neve, R. L. (1991) Molecular analysis of neuronal physiology by gene transfer into neurons with herpes simplex virus vectors. Trends in Neuroscience 14:428–32. [aEAN]CrossRefGoogle ScholarPubMed
Geller, A. I. & Freese, A. (1990) Infection of cultured central nervous system neurons with a defective herpes simplex virus I vector results in stable expression of Escherichia coli -galactosidase. Proceedings of the National Academy of Sciences USA 87:1149–53. [aEAN]CrossRefGoogle Scholar
Geller, A. I., Keyomarsi, K., Bryan, J. & Pardee, A. B. (1990) An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology. Proceedings of the National Academy of Sciences USA 87:8950–54. [aEAN]CrossRefGoogle ScholarPubMed
Gibbs, R. B., Anderson, K. & Cotman, C. W. (1986) Factors affecting innervation in the CNS: Comparison of three cholinergic cell types transplanted to the hippocampus of adult rats. Brain Research 383:362–66. [aJDS]CrossRefGoogle Scholar
Gibbs, R. B., Harria, E. W. & Cotman, C. W. (1985) Replacement of damaged cortical projections by homotypic transplants of entorhinal cortex. Journal of Comparative Neurology 237:4764. [MN-S]CrossRefGoogle ScholarPubMed
Gibson, M. J., Krieger, D. T., Charlton, H. M., Zimmerman, E. A., Silverman, A.-J. & Perlow, M. J. (1984) Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science 225:949–51. [RS]CrossRefGoogle ScholarPubMed
Gionet, T. X., Thomas, J. D., Warner, D. S., Goodlett, C. R., Wasserman, E. A. & West, J. R. (1991) Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats. Stroke 22:1040–47. [rJDS]CrossRefGoogle ScholarPubMed
Giulian, D. (1993) Reactive glia as rivals in regulating neuronal survival. Glio 7:102–10. [rDGS]CrossRefGoogle ScholarPubMed
Goetz, C. G. (1992) Adrenal medulla: Clinical. Restorative Neurology and Neuroscience 4:194. [WJF]Google Scholar
Goetz, C. G., De Long, M. R., Penn, R. D. & Bakay, R. A. E. (1993) Neurosurgical horizons in Parkinson's disease. Neurology 43:17. [aDGS]CrossRefGoogle ScholarPubMed
Goetz, C. G., Olanow, C. W., Koller, W. C., Penn, R. D., Cahill, D., Morantz, R., Stebbins, G., Tanner, C. M., Klawans, H. L., Shannon, K. M., Comeela, C. L., Witt, T., Cox, C., Waxman, M. & Gauger, L. (1989) Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson's disease. New England Journal of Medicine 320:337–41. [WJF]CrossRefGoogle Scholar
Goetz, C. G., Stebbins, G. T. III, Klawans, H. L., Koller, W. C., Grossman, R. G., Bakay, R. A. E. & Penn, R. D. (1991) United Parkinson foundation neurotransplantation registry and adrenal medullary transplants: Presurgical, and 1- and 2-year follow-up. Neurology 41:1719–22. [WJF]CrossRefGoogle ScholarPubMed
Goldberg, W. J. & Bernstein, J. J. (1988) Fetal cortical astrocytes migrate from cortical homografts throughout the host brain and over the glia lirnitans. Journal of Neuroscience Research 20:3845. [RHB]CrossRefGoogle Scholar
Goldberger, M. E. (1991) The use of behavioral methods to predict spinal cord plasticity. Restorative Neurology and Neuroscience 2:339–50. [AP]CrossRefGoogle ScholarPubMed
Goldberger, M. E., Murray, M. & Tessler, A. (1993a) Grafts and functional recuperation. Restorative Neurology and Neuroscience 5:6975. [AP]CrossRefGoogle ScholarPubMed
Goldberger, M. E., Murray, M. & Tessler, A. (1993b) Sprouting and regeneration in the spinal cord – their roles in recovery of function after spinal injury. In: Neuroregeneration, ed. Gorio, A.. Raven Press. [AP]Google Scholar
Gomez-Pinilla, F. & Cotman, C. W. (1992) Transient lesion-induced increase of basic fibroblast growth factor and its receptor in layer (subplate cells) of the adult rat cerebral cortex. Neuroscience 49:771–80. [rDGS]CrossRefGoogle ScholarPubMed
Gould, E., Westlind-Danielsson, A., Frankfurt, M. & McEwen, B. (1990) Sex differences and thyroid hormone sensitivity of hippocampal pyramidal cells. Journal of Neuroscience 10:9961003. [aDGS]CrossRefGoogle ScholarPubMed
Ganholm, A.-C., Backman, C., Bloom, F., Ebendal, T., Gerhardt, G. A., Hoffer, B., Mackerlova, L., Olson, L., Soderstrom, S., Walus, L. R. & Friden, P. M. (1994) NGF and anti-transferrin receptor antibody conjugate: Short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. The Journal of Pharmacology and Experimental Therapeutics 268:448–59. [rDGS]Google Scholar
Gray, J. A. (1982) The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. Oxford University Press. [aJDS]Google Scholar
Gray, J. A., Mitchell, S. N., Joseph, M. H., Grigoryan, G. A., Dawe, S. & Hodges, H. (1994) Neurochemical mechanisms mediating the behavioral and cognitive effects of nicotine. Drug Development Research 31:317. [arJDS]CrossRefGoogle Scholar
Gray, J. A., Sinden, J. D. & Hodges, H. (1990) Cognitive function: Neural degeneration and transplantation. Seminars in the Neurosciences 2:133–42. [aJDS]Google Scholar
Greeley, H. T., Hamm, T., Johnson, R., Price, C. R., Weingarten, R. & Raffin, T. (1989) The ethical use of human fetal tissue in medicine. New England Journal of Medicine 320:1093–96. [aDGS, KAC]CrossRefGoogle Scholar
Grigoryan, G. A., Mitchell, S. N., Hodges, H., Sinden, J. D. & Gray, J. A. (1994) Are the cognitive enhancing effects of nicotine in the rat with lesions to the forebrain cholinergic projection system mediated by an interaction with the noradrenergic system? Pharmacology, Biochemistry and Behavior. [rJDS]CrossRefGoogle Scholar
Groves, A. K., Barnett, S. C., Franklin, R. J. M., Crang, J. A., Mayer, M., Blakemore, W. F. & Noble, M. (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362:453–55. [rJDS]CrossRefGoogle ScholarPubMed
Gupta, M., Gupta, B. K., Thomas, R., Bruemmer, V., Sladek, J. R. Jr, & Felten, D. L. (1986) Aged mice are more sensitive to MPTP treatment than young adults. Neuroscience Letters 70:326–31. [DLF]CrossRefGoogle ScholarPubMed
Gustavii, B. (1989) Fetal brain transplantation for Parkinson's disease: Technique for obtaining donor tissue. Lancet 11:565. [KAC]CrossRefGoogle Scholar
Haas, H. L. (1982) Cholinergic disinhibition in hippocampal slices of the rat. Brain Research 233:200204. [aJDS]CrossRefGoogle ScholarPubMed
Hagan, B. J. & Beaughard, M. (1990) The effects of forebrain ischemia on spatial learning. Behavioural Brain Research 41:151–60. [rJDS]CrossRefGoogle ScholarPubMed
Hagan, J. J., Salamone, J. D., Simpson, J., Iversen, S. D. & Morris, R. G. M. (1988) Place navigation in rats is impaired by lesions of the medial septum and diagonal band but not nucleus basalis magnocellularis. Behavioural Brain Research 27:920. [aJDS]CrossRefGoogle Scholar
Hahn, H. J., Laube, R., Lucke, S. & Besch, W. (1992) Alteration of pancreatic B–cells in wistar rats treated with non–diabetogenic doses of cyclosporin A. Pharmacology 6 Toxicology 7:188–91. [aDGS]CrossRefGoogle Scholar
Hall, W. A. & Fodstad, , (1992) Immunotoxins and central nervous system ncoplasia. Journal of Neurosurgery 76:112. [LC]CrossRefGoogle Scholar
Hanin, I. (1990) AF64A–induced cholinergic hypofunction. Progress in Brain Research 84:289–99. [aJDS]CrossRefGoogle ScholarPubMed
Hansen, J. T., Fiandaca, M. S., Kordower, J. H., Notter, M. F. D. & Gash, D. M. (1990) Striatal adrenal medulla/sural nerve grafts in hemiparkinsonian monkeys. In: Neural transplantation from molecular basis to clinical applications, ed. Dunnett, S. B. & Richards, S. -J.. Elsevier, . [aDGS]CrossRefGoogle Scholar
Hart, T., Chaimas, N., Moore, R. Y. & Stein, D. G. (1978) Effects of nerve growth factor on behavioral recovery following caudate nucleus lesions in rats. Brain Research Bulletin 3:245–51. [aDGS]CrossRefGoogle ScholarPubMed
Hasselmo, M. E., Anderson, B. P. & Bower, J. M. (1992) Cholinergic modulation of cortical associative memory function. Journal of Neurophysiology 67:123–46. [aJDS]CrossRefGoogle ScholarPubMed
Hasselmo, M. E. & Bower, J. M. (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Journal of Neurophysiology 67:1222–29. [aJDS]CrossRefGoogle Scholar
Hatten, M. E., Lynch, M., Rydel, R. E., Sanchez, J., –Silverstein, J., Moscatelli, D. & Rifkin, D. B. (1988) In vitro neurite extension by granule neurons is dependent upon astroglial–derived fibroblast growth factor. Developmental Biology 125:2889. [rDGS]CrossRefGoogle ScholarPubMed
Hattori, S., Li, Q. M., Matsui, N., Hashitani, T. & Nishino, H. (1992) Treadmill running combined with microdialysis evaluates motor deficits and improvement following dopaminergic grafts in 6–OHDA lesioned rats. Restorative Neurology and Neuroscience 4:165. [JPB]Google Scholar
Hauser, M. D. & Marler, P. (1992) How do and should studies of animal communication affect interpretations of child phonological development? In: Phonological development: Models, research, and implications, ed. Ferguson, C., Menn, L. & Stoel-Gammon, C.. York Press. [MPL]Google Scholar
Haydon, P. G., McCobb, D. P. & Kater, S. B. (1984) Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 226:561–64. [KS–C]CrossRefGoogle ScholarPubMed
Hedrich, H. J. (1990) Inbred strains in biomedical research. In: Cenetic monitoring of inbred strains of rats: A manual on colony management, basic monitoring techniques and genetic variants of the laboratory rat, ed. Hedrich, H. J. for the International Council on Laboratory Animals, Custav Fisher Verlag, NY. [JPB]Google Scholar
Hcfti, F. (1983) Is Alzheimer's disease caused by a lack of nerve growth factor? Annals of Neurology 13:19–1. [EJM]Google Scholar
Hefti, F., Hartikka, J. & Knusel, B. (1989) Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegencrative diseases. Ncurobiology of Aging 1:515–33. rDGS]CrossRefGoogle Scholar
Helgren, M. E. & Goldberger, M. E. (1993) The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Experimental Neurology 123:1734. [rDGS, AP]CrossRefGoogle ScholarPubMed
Hepler, D. J., Olton, D. S., Wenk, G. L. & Coyle, J. T. (1985) Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. Journal of Neuroscience 5:866–73. [aJDS]CrossRefGoogle ScholarPubMed
Heuschling, P., De Paermentier, F. & van den Bosch de Aguilar, P. (1988) Topographical distribution in the adult rat brain of neurotrophic activities directed to central nervous system targets. Developmental Brain Research 38:917. [aDGS]CrossRefGoogle Scholar
Hickey, W. F. & Kimura, H. (1987) Graft–vs.–host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proceedings of the National Academy of Sciences USA 84:282–86. [aDGS]CrossRefGoogle Scholar
Hickman, S., Shapiro, L. J. & Neufeld, E. F. (1974) A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochemical and Biophysical Research Communications 57:5561. [aEAN]CrossRefGoogle ScholarPubMed
Higgins, G. A. & Mufson, E. J. (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer's disease. Experimental Neurology 16:222–36. [EJM]CrossRefGoogle Scholar
Hirsch, E. C., Duyckaerts, C., Javoy-Agid, F., Hauw, J.-J. & Agid, Y. (1990) Does adrenal graft enhance recovery of dopaminergic neurons in Parkinson's disease? Annals of Neurology 27:676–82. [aDGS, KS–C, WJF]CrossRefGoogle ScholarPubMed
Hirsh, R. (1974) The hippocampus and contextual retrieval from memory: A theory. Behavioral Biology 12:421–44. [aJDS]CrossRefGoogle ScholarPubMed
Ho, D. Y., Mocarski, E. S. & Sapolsky, R. M. (1993) Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proceedings of the National Academy of Sciences USA 9:3655–59. [aEAN]CrossRefGoogle Scholar
Hodges, H., Allen, Y., Kershaw, T., Lantos, P. L., Gray, J. A. & Sinden, J. (1991a) Effects of cholinergic–rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 1. Amelioration of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain. Neuroscience 45:587–67. [arJDS]CrossRefGoogle Scholar
Hodges, H., Allen, Y., Sinden, J., Lantos, P. L. & Gray, J. A. (1990) Cholinergic–rich transplants alleviate cognitive deficits in lesioned rats but exacerbate response to cholinergic drugs. In: Neural transplantation from molecular basis to clinical application, ed. Dunnett, S. B. & Richards, S.-J.. Elsevier. [aDGS]Google Scholar
Hodges, H., Allen, Y., Sinden, J., Lantos, P. L. & Gray, J. A. (1991b) The effects of cholinergic–rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 2. Cholinergic drugs as probes to investigate lesioninduced deficits and transplant–induced functional recovery. Neuroscience 45:69–23. [arJDS]Google Scholar
Hodges, H., Allen, Y., Sinden, J., Mitchell, S. N., Arendt, T., Lantos, P. L. & Gray, J. A. (1991c) The effects of cholinergic drugs and cholinergic–rich foetal neural transplants on alcohol–induced deficits in radial–maze performance in rats. Behavioural Brain Research 43:728. [aJDS]CrossRefGoogle ScholarPubMed
Hodges, H., Gray, J. A., Allen, Y. & Sinden, J. (1991d) The role of the forebrain cholinergic projection system in performance in the radial–arm maze in memory–impaired rats. In: Effects of nicotine on biological systems, ed. Adlkofer, A. & Thurau, K.. Basel: Birkhauser Verlag. [aJDS]Google Scholar
Hodges, H., Sinden, J., Meldrum, B. & Gray, J. (1994) Cerebral transplantation in animal models of ischaemia. In: Functional neural transplantation, ed. Dunnett, S. B. & Bjorklund, A.. Raven Press. [aJDS]Google Scholar
Hodges, H., Sinden, J., Turner, J. J., Netto, C. A., Sowinski, P. & Gray, J. A. (1992) Nicotine as a tool to characterise the role of forebrain cholinergic projection system in cognition. In: The biology of nicotine, ed. Collins, A. C., Gray, J. A., Robinson, J. H. & Lipiello, P. M.. Raven Press. [aJDS]Google Scholar
Hodges, H., Sowinski, P., Fleming, P., Kershaw, T. R., Sinden, J. D., Meldrum, B. R. & Gray, J. A. (1993) Foetal CA1 grafts selectively alleviate ischaemic deficits in spatial learning and working memory. Journal of Cerebral Blood Flow and Metabolism 13(supplement):51. [arJDS]Google Scholar
Hoffer, B. J., Leenders, K. L., Young, D., Gerhardt, G., Zerbe, G., Bygdeman, M., Seiger, A., Olson, L., Stromberg, I. & Freedman, R. (1992) Eighteen–month course of two patients with grafts of fetal dopamine neurons for severe Parkinson's disease. Experimental Neurology 118:243–52. [aDGS]CrossRefGoogle ScholarPubMed
Hokfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S. & White, N. (1975) Thyrotropin releasing hormone (TRH)–containing nerve terminals in certain brainstem nuclei and in the spinal cord. Neuroscience Letters 1:133–39. [AP]CrossRefGoogle ScholarPubMed
Hokfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B. & Goldstein, M. (1978) Immunohistochemical evidence of substance P–like immunoreactivity in some hydroxytryptamine-containing) neurons in the rat central nervous system. Neuroscience 3:517–38. [AP]CrossRefGoogle ScholarPubMed
Holt, C. E., Garlick, N. & Cornel, E. (1990) Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4:23–14. [LC]CrossRefGoogle ScholarPubMed
Horellou, P., Brundin, P., Kalen, P., Mallet, J. & Bjorklund, A. (1990) In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron 5:393–42. [aDGS]CrossRefGoogle Scholar
Horellou, P., Guibert, B., Leviel, V. & Mallet, J. (1989) Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: Regulated release of dopamine in mouse anterior pituitary AtT–2 cells. Proceedings of the National Academy of Sciences USA 86:7233–37. [aEAN]CrossRefGoogle Scholar
Horwitz, M. S. (1991) Adenoviridae and their replication. In: Fundamental virology, ed. Fields, B. N. & Knipe, D. M.. Raven Press. [aEAN]Google Scholar
Huang, H.-J. S., Yee, H.-K., Shew, J.-Y., Chen, P.-L., Bookstein, R., Friedmann, T., Lee, E.Y.-H.P. & Lee, W.-H. (1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–66. [aEAN, GMS]CrossRefGoogle ScholarPubMed
Huang, Q., Vonsattel, J. P., Schaffer, P. A., Martuza, R. L., Breakefield, X. O. & DiFiglia, M. (1992) Introduction of a foreign gene (escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virux mutants: Alight and electron microscopic study. Experimental Neurobiology 115:33–16. [arEAN]Google Scholar
Hurtig, H., Joyce, J., Sladek, J. R. & Trojanowski, J. Q. (1989) Postmortem analysis of adrenal–medulla-to-caudate autograft in a patient with Parkinson's disease. Annals of Neurology 25:67–14. [aDGS]CrossRefGoogle Scholar
Hyde, S. C., Gill, D. R., Higgins, C. F., Trezise, A. E. O., MacVinish, L. J., Cuthbert, A. W., Ratcliff, R., Evans, M. J. & Colledge, W. H. (1993) Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362:2555. [LC]CrossRefGoogle ScholarPubMed
Ikegami, S., Mihonmatsu, I., Hatanaka, H., Takei, N. & Kawamura, H. (1989a) Recovery of hippocampal cholinergic activity in AF64A treated rats. Neuroscience Letters 11:1722. [aDGS]CrossRefGoogle Scholar
Ikegami, S., Nihonmatsu, I., Hatanaka, H., Takei, N. & Kawamura, H. (1989b) Transplantation of septal cholinergic neurons to the hippocampus improves memory impairments of spatial learning in rats treated with AF64A. Brain Research 496:321–26. [aJDS]CrossRefGoogle Scholar
Ikegami, S., Nihonmatsu, I. & Kawamura, H. (1991) Transplantation of ventral forebrain cholfnergic neurons to the hippocampus ameliorates impairment of radial–arm maze learning in rats with AF64A treatment. Brain Research 548:187–95. [aJDS]CrossRefGoogle Scholar
Imperato, A., Honore, T. & Jensen, L. H. (1990) Dopamine release in the nucleus caudatus and in the nucleus accumbens under glutamatergic control through non–NMDA receptors: A study in freely–moving rats. Brain Research 53:223–28. [JPB]CrossRefGoogle Scholar
Ip, N. Y., Wiegand, S. J., Morse, J. & Rudge, J. S. (1993) Injury-induced regeneration of ciliary neurotrophic factor mRNA in the adult rat brain. European Journal of Neuroscience 5:2533. [rDGS]CrossRefGoogle Scholar
Isaka, Y., Fujiwara, Y., Ueda, N., Kaneda, Y., Kamada, T. & Imai, E. (1993) Glomerulosclerosis induced by in vivo transfection of transforming growth factor–B or platelet–derived growth factor gene into the rat kidney. Journal of Clinical Investigation 92:2597–261. [LC]CrossRefGoogle ScholarPubMed
Isono, M., Poltorak, M., Kulaga, H., Adams, A. J. & Freed, W. J. (1993) Certain host–donor rat strain combinations do not reject brain allografts after systemic sensitization. Experimental Neurology 122:4856. [JPB]CrossRefGoogle Scholar
Itakura, T., Yokote, H., Yukawa, S., Nakai, M., Komai, N. & Unemento, M. (1990) Transplantation of peripheral cholinergic neurons into Alzheimer model rat brain. Stereotaxic Functional Neurosurgery 54:368–72. [aJDS]CrossRefGoogle ScholarPubMed
Jacobs, K. M. & Donoghue, J. P. (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–47. [BBS]CrossRefGoogle ScholarPubMed
Jacobson, J. G., Leib, D. A., Goldstein, D. J., Bogard, C. L., Schaffer, P. A., Weller, S. K. & Coen, D. M. (1989) A herpes simplex virus ribonudeotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–83. [rEAN]CrossRefGoogle ScholarPubMed
Jankovic, J., Grossman, R., Goodman, C., Pirozzolo, F., Schneider, L., Zhu, Z., Scardino, P., Garber, A. J., Jhingran, S. G. & Martin, S. (1989) Clinical, biochemical, and neuropathologic findings following transplantation of adrenal medulla to the caudate nucleus for treatment of Parkinson's disease. Neurology 39:1227–34. [aDGS]CrossRefGoogle Scholar
Janzer, R. C. & Raff, M. C. (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325:253–57. [rDGS]CrossRefGoogle ScholarPubMed
Jarrard, L. E. (1986) Selective hippocampal lesions and behavior: Implications for current research and theorizing. In: The hippocampus, vol. 4, ed. Isaacson, R. & Pribram, K.. Plenum Press. [arJDS, HPD]Google Scholar
Jarrard, L. E.(1993) Review: On the role of the hippocampus in learning and memory in the rat. Behavioral and Neural Biology 6:926. [rJDS]CrossRefGoogle Scholar
Jarrard, L. E., Kant, G., Meyerhoff, J. & Levy, A. (1984) Behavioral and neurochemical effects of intraventricular administration of AF64A in rats. Pharmacology, Biochemistry & Behaviour 21:273–8. [aJDS]CrossRefGoogle ScholarPubMed
Jat, P. S., Noble, M. D., Ataliotis, P., Tanaka, Y., Yannoutsos, N., Larsen, L. & Kioussis, D. (1991) Direct derivation of conditionally immortal cell lines from an H–2Kb–tsA58 transgenic mouse.Proceedings of the National Academy of Sciences USA 88:596–51. [aJDS]CrossRefGoogle ScholarPubMed
Jhamandas, K. & Marien, M. (1987) Glutamate–evoked release of endogenous brain dopamine: Inhibition by an excitatory amino acid antagonist and an enkephaline analogue. British Journal of Pharmacology 9:641–5. [JPB]CrossRefGoogle Scholar
Jiao, S., Acsadi, G., Jani, A., Feigner, P. L. & Wolff, J. A. (1992) Persistence of plasmid DNA and expression in rat brain cells in vivo. Experimental Neurology 115:413. [arEAN, LC]CrossRefGoogle ScholarPubMed
Jiao, S., Gurevich, V. & Wolff, J. A. (1993) Long–term correction of rat model of Parkinson's disease by gene therapy. Nature 362:4553. [rEAN, CNS, LC]CrossRefGoogle ScholarPubMed
Johnson, P. A., Miyanohara, A., Levine, F., Cahill, T. & Friedmann, T. (1992) Cytotoxicity of a replication–defective mutant of herpes simplex virus type 1. Journal of Virology 66:2952–65. [arEAN]CrossRefGoogle ScholarPubMed
Jones, B. E. & Cuello, A. C. (1989) Afferents to the basal forebrain cholinergic area from pontomesencephalic–catecholamine, serotonin and acetylcholine–neurons. Neuroscience 31:3761. [aJDS]CrossRefGoogle Scholar
Jones, B. E. & Yang, T. Z. (1985) Efferent projections from the reticular formation and the locus eoeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology 242:5692. [aJDS]CrossRefGoogle Scholar
Jones, T. A. & Schallert, T. (1994) Use-dependent growth of pyramidal neurons after neocortex damage. Journal of Neuroscience 14:214–52. [TS]CrossRefGoogle Scholar
Kachidian, P., Poulat, P., Marlier, L. & Privat, A. (1991) Immunohistochemical evidence for the coexistence of substance P, Thyrotropin–releasing hormone, GABA, Methionin–enkephalin, and Leucin–enkephalin in the serotonergic neurons of the caudal raphe nuclei: A dual labeling in the rat. Journal of Neuroscience Research 3:521–3. [AP]CrossRefGoogle Scholar
Kaseda, Y., Simon, J. R. & Low, W. C. (1989) Restoration of high affinity choline uptake in the hippocampal formation following septal cell suspension transplants in rats with fimbria–fornix lesions. Journal of Neurochemistry 53:482–88. [YJL]CrossRefGoogle ScholarPubMed
Kaseda, Y., Simon, J. R. & Low, W. C. (1990) GABAergic modulation of cholinergic septal neurons transplanted to the hippocampal formation. International Journal of Neurology 24:174–81. [YJL]Google Scholar
Kataoka, K., Hayakawa, T., Ryotaro, K., Yuguchi, T. & Yamada, K. (1991) Cholinergic deafferentation after focal cerebral infarct in rats.Stroke 22:1291–96. [rJDS]CrossRefGoogle ScholarPubMed
Kelsey, J. E. & Vargas, H. (1993) Medial septal lesions disrupt spatial, but not nonspatial working memory in rats. Behavioral Neuroscience 17:565–74. [rJDS]CrossRefGoogle Scholar
Kemper, S. (1992) Language and aging. In: The handbook of aging and cognition, ed. Craik, F. I. M. & Salthouse, T. A.. Erlbaum. [MPL]Google Scholar
Kesslak, J. P., Nieto-Sampedro, M., Globus, J. & Cotman, C. W. (1986) Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation. Experimental Neurology 92:377–9. [arDGS]CrossRefGoogle ScholarPubMed
Kiyota, Y., Miyamoto, M. & Nagaoka, A. (1991) Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Research 538:295–32. [rJDS]CrossRefGoogle ScholarPubMed
Klein, D., Moore, R. Y. & Reppert, S. M. (1991) The suprachiasmatic nucleus: The mind's clock. Oxford University Press.[RS]Google Scholar
Klockgether, T. & Turski, L. (1989) Excitatory amino acids and the basal ganglia: Implications for the therapy of Parkinson's disease. Trends in Neuroscience 18:1576. [KS–C]Google Scholar
Koch, S. & Leary, D. E. (1992) A century of psychology as science. American Psychological Association. [MPL]CrossRefGoogle Scholar
Kocsis, J. D., Black, J. A. & Waxman, S. G. (1993) Pharmacological modification of axon membrane molecules and cell transplantation as approaches to the restoration of conduction in demyelinated axons. In: Molecular and cellular approaches to the treatment of neurological disease, ed. Waxman, S. G.. Raven Press. [RHB]Google Scholar
Kondoh, T. & Low, W. C. (1994) Clutamate uptake blockade induces striatal dopamine release in 6–hydroxydopamine rats with intrastriatal grafts: Evidence for host modulation of transplanted dopamine neurons. Experimental Neurology. In press. [JPB]CrossRefGoogle Scholar
Konig, N., Wilkie, M. B. & Lauder, J. (1988) Tyrosine hydroxylase and serotonin containing cells in embryonic rat rhombencephalon: A wholemount immunocytochemical study. Journal of Neuroscience Research 2:212–23. [AP]CrossRefGoogle Scholar
Kontur, P. J., Marek, K. L., Redmond, D. E. & Roth, R. H. (1992) L-dopa toxicity in cultures of rat mesencephalic dopamine neurons. Social Neuroscience 18:1576. [KS–C]Google Scholar
Kordower, J. H., Cochran, E., Penn, R. D. & Goetz, C. G. (1991) Putative chromaffin cell survival and enhanced host–derived TH–fiber innervation following a functional adrenal medulla autograft for Parkinson's disease. Annals of Neurology 29:45–12. [aDGS, WJF, KS–C]CrossRefGoogle ScholarPubMed
Kordower, J. H., Felten, D. L. & Gash, D. M. (1992) Neural grafting for Parkinson's disease. In: Scientific basis for the treatment of Parkinson's disease, ed. Olanow, C. W. & Lieberman, A.. Parthenon. [DLF]Google Scholar
Kordower, J. H., Fiandaca, M. G., Notter, M. F., Hansen, J. T. & Gash, D. M. (1990) NGF-like trophic support from peripheral nerve for grafted rhesus adrenal chromaffin cells. Journal of Neurosurgery 73:418–28. [aDGS]CrossRefGoogle ScholarPubMed
Kordower, J. H., Mufson, E. J., Granholm, A. -C, Hoffer, B. & Friden, P. M. (1993) Delivery of trophic factors to the primate brain. Experimental Neurology 124:21–3. [EJM]CrossRefGoogle Scholar
Kordower, J. H., Notter, M. F. D. & Gash, D. M. (1987) Neuroblastoma cells in neural transplants: A neuroanatomical and behavioral analysis. Brain Research 417:8598. [aJDS]CrossRefGoogle ScholarPubMed
Korsching, S., Auberger, G., Heumann, R., Scott, J. & Thoenen, H. (1985) Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO Journal 4:86–9. [aJDS]CrossRefGoogle ScholarPubMed
Koshland, D. E. Jr, (1992) Fetal tissue research (editorial). Science 1741. [KAC]CrossRefGoogle Scholar
Krettek, J. E. & Price, J. L. (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. Journal of Comparative Neurology 171:157–92. [YJL]CrossRefGoogle ScholarPubMed
Kreuger, B. A., Trakshel, G. M., Sluss, P. M. & Maines, M. D. (1991) Cyclosporin–mediatcd depression of luteinizing hormone receptors and heme biosynthesis in rat testes: A possible mechanism for decrease in serum testosterone. Endocrinology 129:2647–54. [aDGS]CrossRefGoogle Scholar
Krieg, W. J. S. (1946) Connections of the cerebral cortex. 1: The albino rat. B: Structure of the cortical areas. Journal of Comparative Neurology 84:277323. [YJL]CrossRefGoogle Scholar
Krnjevic, K., Pumain, P. or Renaud, L. (1971) The mechanism of excitation by acctylcholinc in the cerebral cortex. Journal of Physiology (London) 215:247–68. [aJDS]CrossRefGoogle ScholarPubMed
Kromer, L. F. & Cornbrooks, C. J. (1985) Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proceedings of the National Academy of Sciences USA 82:633–34. [RHB]CrossRefGoogle ScholarPubMed
Kunkel-Bagden, E. & Bregman, B. S. (1990) Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth. Experimental Brain Research 81:2534. [AP]CrossRefGoogle ScholarPubMed
Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. (1992) Recovery of function after spinal cord hemisection in newborn and adult rats-Differential effects on reflex and locomotor function. Experimental Neurology 116:451. [AP]CrossRefGoogle ScholarPubMed
Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. (1993)Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Experimental Neurology 119:153–64. [AP]CrossRefGoogle ScholarPubMed
Labbe, R., Firl, A. C., Mufson, E. J. & Stein, D. G. (1983) Fetal brain transplants: Reduction of cognitive deficits in rats with frontal cortex lesions. Science 217:4772. [aDGS, NWB, SBD, MLW]Google Scholar
La Camma, E. F., Weisinger, G., Lenn, N. J. & Strecker, R. E. (1993) Genetically modified primary astrocytes as cellular vehicles for gene therapy in the brain. Cell Transplantation 2:27–14. [RHB]Google Scholar
Landau, W. M. (1990) Artificial intelligence: The brain transplant cure for parkinsonism. Neurology 4:733–4. [aDGS, KAC]CrossRefGoogle Scholar
Landau, W. M. (1993) Clinical mythology X. Faithful fashion: Survival status of the brain transplant cure for Parkinsonism. Neurology 43:644–49. [HPD]CrossRefGoogle Scholar
Lanier, W. L., Perkins, W. J., Karlsson, B. R., Milde, J. H., Scheithauer, B. W., Shearman, G. T. & Michenfelder, J. D. (1990) The effects of dizociipine maleatc (MK–81), an antagonist of the N-methyl–D–aspartate receptor on neurologic recovery and histopathology following complete cerebral ischemia in primates. Journal of Cerebral Blood Flow and Metabolism 1; 252–61. [rJDS]CrossRefGoogle Scholar
Lankford, K. L., DeMello, F. G., Klein, W. L. (1988) Dl–type dopamine receptors inhibit growth cone motility in cultured retina neurons: Evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proceedings of the National Academy of Sciences USA 85:2839–43. [KS–C]CrossRefGoogle Scholar
Lawrence, J. M., Raisman, G., Mirsky, R.Jessen, K. R. (1991) Transplantation of postnatal rat enteric ganglia into denervated adult rat hippocampus. Neuroscience 44:371–79. aJDSCrossRefGoogle ScholarPubMed
Lazar, E.del, Cerro M. (1992) A new procedure for multiple intraretinal grafting into mammalian eyes. Journal of Neuroscience Methods 43:157–71. CMSCrossRefGoogle ScholarPubMed
Leanza, G., Nilsson, O. G.Bjorklund, A. (1993) Functional activity of intrahippocampal scptal grafts is regulated by catecholaminergic host afferents as studied by microdialysis of acetylcholine. Brain Research 618:4756. aJDSCrossRefGoogle Scholar
Lee, W. H., Bookstein, R., Hong, F., Young, L. J., Shew, J. Y.Lee, E. (1987) Human retinoblastoma susceptibility gene: Cloning, identification and sequence. Science 235:1394–99. GMSCrossRefGoogle Scholar
Le Gal La Salle, G., Robert, J. J., Berrard, S., Ridoux, V., Stratford-Perricaudet, L. D., Perrieaudet, M.. Mallet, J. (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259:988–90. aEANCrossRefGoogle ScholarPubMed
Lehman, M. N.Silver, R. (1994) Restoration of circadian rhythms by neural transplants. In: Neural transplantation, CNS neuronal injuryregeneration, ed. Marwah, J., Teitelbaum, P.Prasad, K. N.. CRC Press. RSGoogle Scholar
Lehman, M. N., Silver, R., Gladstone, W. R., Kahn, R. M., Gibson, M.Bittman, E. L. (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. Journal of Neuroscience 7:1626–38. RSCrossRefGoogle ScholarPubMed
Leinekugel, P., Michel, S., Conzelmann, E.Sandhoff, K. (1992) Quantitative correlation between the residual activity of exosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Human Genetics 88:513–23. aEAN, DASCrossRefGoogle ScholarPubMed
Lem, J., Flannery, J., Applebury, M., Farber, D.Simon, M. (1992) Retinal degeneration is rescued in transgenie rd mice by expression of the cGMP phosphodiesterase beta subunit. Proceedings of the National Academy of Sciences USA 89:4422–26. GMSCrossRefGoogle Scholar
Le Moal, M.Simon, H. (1991) Mesocorticolimbic dopamincrgic network – functional and regulatory roles. Physiological Reviews 71:155234. aJDSCrossRefGoogle Scholar
Le Peillet, E., Arvin, B., Moneada, C.Meldrum, B. S. (1992) The non-NMDA antagonists NBQX and GYK1 52466 protect against cortical and striatal cell loss following transient global ischaemia in the rat. Brain Research 571:115–20. aJDSCrossRefGoogle Scholar
Leviel, V., Gobert, A.Guibert, B. (1990) The glutamate-mediated release of dopamine in the rat striatum: Further characterization of the dual excitatory-inhibitory function. Neuroscience 39:305–12. JPBCrossRefGoogle ScholarPubMed
Lewis, P., Hensel, M.Emerman, M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. Embo Journal 11:3053–58. DASCrossRefGoogle ScholarPubMed
Lezak, M. (1983) Neuropsychological assessment. Oxford University Press. BAGoogle Scholar
Li, Y. J., Baskin, F., Davis, R.Hersh, L. B. (1993) Cholinergic neuronspecific expression of the human choline acetyltransferase gene is controlled by silencer elements. Journal of Neurochemistry 61:748–51. LCCrossRefGoogle Scholar
Li, Y. J.Raisman, G. (1993) Long axon growth from embryonic neurons transplanted into myelinated tracts of the adult rat spinal cord. Brain Research 629:119–27. PSCrossRefGoogle ScholarPubMed
Li, Y. J., Simon, J. R.Low, W. C. (1992) Intrahippocampal grafts of cholinergic-rich striatal tissue ameliorate spatial memory deficits in rats with fornix lesions. Brain Research Bulletin 29:147–55. YJLCrossRefGoogle ScholarPubMed
Lin, L.F. H., Doherty, D. H., Lile, J. D., Bektesth, S.Collins, F. (1993) GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–32.rDGSCrossRefGoogle ScholarPubMed
Lindsay, R. M., Altar, C. A., Cedarbaum, J. M., Hyinan, C.Weigand, S. J. (1993) The therapeutic potential of neurotrophic factors in the treatment of Parkinsons disease. Experimental Neurology 124:103–18. rDCS, EJMCrossRefGoogle Scholar
Lindvall, O. (1994) Neural transplants in Parkinsons disease. In: Functional neural transplantation, ed. Dunnett, S. B.Bjrklund, A.. Raven Press. SBDGoogle Scholar
Lindvall, O., Brunden, P., Widner, H., Nekcrona, S. et al. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinsons disease. Science 247:574–77. aDGSCrossRefGoogle Scholar
Lindvall, O., Rehncrona, S., Brundin, P. et al. (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinsons disease. Archives of Neurology 46:615–31. aDGSCrossRefGoogle Scholar
Lindvall, O., Widner, H., Rehncrona, S., Brundin, P., Odin, P., Gustavii, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Bjrklund, A.Marsden, C. D. (1992) Transplantation of fetal dopamine neurons in Parkinsons disease: One year clinical and neurophysiological observations in two patients with putaminal implants. Annals of Neurology 31:155–65.aJDSCrossRefGoogle ScholarPubMed
Lishman, W. A. (1986) Alcoholic dementia: A hypothesis. Lancet 1:1184–86. aJDSCrossRefGoogle ScholarPubMed
Lopez-Lozano, J. J., Bravo, G.Abascal, J. (1990) A long-term study of Parkinsons patients subjected to autoimplants of perfused adrenal medulla into the caudate nucleus. Transplant Proceedings 22(5):2243–46. aDGSGoogle ScholarPubMed
Low, W. C., Daniloff, J. K., Bodony, R. P.Wells, J.(1985) Cross-species transplants of cholinergic neurons and the recovery of function. In: Neural grafting in the mammalian CNS, ed. Bjorklund, A.Stenevi, U.. Elsevier. YJLGoogle Scholar
Low, W. C., Lewis, P. R., Bunch, S. T., Dunnett, S. B., Thomas, S. R., Iversen, S. D., Bjrklund, A.Stenevi, U. (1982) Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampus lesions. Nature 300:260–62. YJLCrossRefGoogle Scholar
Lowenstein, D. H., Seren, M. S.Longo, F. M. (1993) Prolonged increases in neurotrophic activity associated with kainate-induced hippocampal synaptic reorganization. Neuroscience 56:597604. rDGSCrossRefGoogle ScholarPubMed
Loy, R.Milner, T. A. (1990) Sexual dimorphism in extent of axonal sprouting in rat hippocampus. Science 208:1282–84. aDGSCrossRefGoogle Scholar
Lui, A.Lauder, J. M. (1992) Serotonin promotes region-specific glial influences on cultured serotonin and dopamine neurons. Clia 5:306–17. rJDS, VVJFGoogle Scholar
Lund, R. D.Huuschka, S. D. (1976) Transplanted neural tissue develops connections with host rat brain. Science 193:582–84. aJDSCrossRefGoogle ScholarPubMed
Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Marta, J., Torres, C.Becerril, J. J. (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in Parkinsons disease: A report of two cases. Netu England Journal of Medicine 316:831–34. aDGS, BHB, WJFCrossRefGoogle Scholar
Madrazo, I., Franco-Bourland, R., Ostrosky-Solis, F., Aguilera, M., Cuevas, C., Castrejon, H., Guizar, G.Magallon, E. (1990) Dementia following brain grafting. Transplantation 49:1026–27. aDGSCrossRefGoogle ScholarPubMed
Madrazo, I., Leon, V., Torres, C., Aguilera, D. C., Varela, G., Alverez, F.Fraga, A. (1988) Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinsons disease. New England Journal of Medicine 318:51. aDGSGoogle Scholar
Mahadik, S. B.Karpiak, S. E. (1988) Gangliosides in treatment of neural injury and disease. Drug Development Research 15:337–60. arDGSCrossRefGoogle Scholar
Mahalik, T. J., Finger, T. E., Stromberg, I.Olson, L. (1985) Substantia nigra transplants into denervated striatum of the rat: Ultrastructure of graft and host interconnections. Journal of Comparative Neurology 240:6070. JPBGoogle ScholarPubMed
Mahowald, M. B., Silver, J.Ratcheson, R. A. (1987) The ethical options in transplanting fetal tissue. Hastings Center Report 17:915. KACCrossRefGoogle ScholarPubMed
Mahuran, D. J. (1991) The biochemistry of HEXA and HEXB gene mutations causing Gm2- gangliosidosis. Biochimical et Biophysica Acta 1096:8794. aEANGoogle ScholarPubMed
Mann, D. A. (1985) The neuropathology of Alzheimers disease: A review with pathogenetic, aetiological and therapeutic considerations. Mechanisms of Ageing and Development 31:213–55. SBDCrossRefGoogle ScholarPubMed
Manthorpe, M., Nieto-Sampedro, M., Skaper, S. D., Lewis, E. R., Barbin, G., Longo, F. M., Cotman, C. W.Varon, S. (1983) Neuronotrophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity. Brain Research 267:4756. MN-SCrossRefGoogle ScholarPubMed
Markert, J. M., Malick, A., Coen, D. M.Martuza, R. L. (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32:597603. aEANCrossRefGoogle Scholar
Markowska, A. L., Olton, D. S., Murray, E. A.Caffan, D. (1989) A comparative analysis of the role of the fornix and cingulate cortex in memory: Rats. Experimental Brain Research 74:187201. YJLCrossRefGoogle ScholarPubMed
Marlier, L., Sandillon, F., Poulat, P., Geffard, M.Privat, A. (1991) Serotonergic innervation of the dorsal horn of rat spinal cord: Light and electron microscopic immunocytochemical study. Journal of Ncurocytology 20:310–22. APCrossRefGoogle ScholarPubMed
Marsden, K. M. (1992) Transplantation of cell lines: A behavioral and histological analysis. Doctoral thesis, University of London. aJDSGoogle Scholar
Martuza, R. L., Malick, A., Markert, J. M., Ruffher, K. L.Coen, D. M. (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252:854–56. aEANCrossRefGoogle ScholarPubMed
Mason, D. W., Charlton, H. M., Jones, A. J., Lavy, C. B. D., Puklavec, M., Simmonds, S. J. (1986) The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neurosdence 19:685–94. JPBCrossRefGoogle ScholarPubMed
Matsunami, K., Kawashima, T.Satake, H. (1989) Mode of (14C) 2-deoxy-D-Glucose uptake into retrosplenial cortex and other memory-related structures of the monkey during a delayed response. Brain Research Bulletin 22:829–38. YJLCrossRefGoogle Scholar
Matsuo, K., Ikeshima, H., Shimoda, K., Umezawa, A., Hata, J., Maejima, K., Nojima, H.Takano, T. (1993) Expression of the rat calmodulin gene II in the central nervous system: A 294-base promoter and 68-base leader segment mediated neuron-specific gene expression in transgenic mice. Molecular Brain Research 20:920. LCCrossRefGoogle Scholar
Matsuyama, T., Tsuchiyama, M., Nakamura, H., Matsumoto, M.Sugita, M. (1993) Hilar somatostatin neurons are more vulnerable to an ischemic event than CAI pyramidal neurons. Journal of Cerebral Blood Flow and Metabolism 13:229–34. rJDSCrossRefGoogle Scholar
Mattson, M. P., Cheng, B.Smith-Swintosky, V. L. (1993) Mechanisms of neurotrophic factor protection against calcium- and free radical-mediated excitotoxic injury: Implications for treating neurodegenerative disorders. Experimental Neurology 124:8995. rDGSCrossRefGoogle ScholarPubMed
Mattson, M. P.Ryuchlik, B. (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: Involvement of fibroblast growth factor. International Journal of Developmental Neuroscience 8:399415. aDGSCrossRefGoogle ScholarPubMed
McCormick, D. A. (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology 39:337–88. aJDSCrossRefGoogle ScholarPubMed
McCormick, D. A.Prince, D. A. (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. Journal of Physiology (London) 375:169–94. aJDSCrossRefGoogle ScholarPubMed
McCullagh, P. J. (1987) The fetus as transplant donor: Scientific, social and ethical perspectives. Wiley. KACGoogle Scholar
McGeer, P. L., McGeer, E. G.Suzuki, J. S. (1977) Aging and extrapyramidal function. Archives of Neurology 34:3335. EJMCrossRefGoogle ScholarPubMed
McGeoch, D., Dalrymple, M., Davison, A., Dolan, A., Frame, M., McNab, D., Perry, L., Scott, J.Taylor, P. (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–74. aEANCrossRefGoogle Scholar
McGurk, S. R., Hartgraves, S. L., Kelly, P. H., Gordon, M. N.Butcher, L. L. (1987) Is ethylcholine aziridinium ion a specific cholinergic neurotoxin? Neuroscience 22:215–24. aJDSCrossRefGoogle Scholar
McLaughlin, T., Steinberg, B., Christensen, B., Law, I., Parving, A.Friberg, L. (1992) Potential language and attentional networks revealed through factor analysis of rCBF data measured with SPECT. Journal of Cerebral Blood Flow and Metabolism 12:535–45. rDGSCrossRefGoogle ScholarPubMed
Meienberg, O., Zangemeister, W. H., Rosenberg, M., Hoyt, W. F.Stark, L. (1981) Saccadic eye movement strategics in patients with homonymous hemianopia. Annals of Neurology 9:537–44. RWCrossRefGoogle Scholar
Meldrum, B. (1990) Protection against ischaemic neuronal damage by drugs acting on excitatory neurotransmission. Ccrebrovascular Brain Metabolism Review 2:2757. rJDSGoogle ScholarPubMed
Merlio, J. P., Ernfors, P., Kokaia, Z., Middlemas, D. S., Bengzon, J., Kokaia, M., Smith, M. L., Siesjo, B. K., Hunter, T., Lindvall, O.Persson, H. (1993) Increased production of the TrkB protein tyrosine kinasc receptor after brain insults. Neuron 10:151–64. rJDSCrossRefGoogle Scholar
Messersmith, D. J., Fabrazzo, M., Mochetti, I.Kromer, L. F. (1991) Effects of sciatic nerve transplants after fimbria-fornix lesion: Examination of the role of nerve growth factor. Brain Research 557:293–97. aJDSCrossRefGoogle ScholarPubMed
Mesulam, M. M., Mufson, E. J., Levey, A. I.Wainer, B. H. (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. Journal of Comparative Neurology 214:170–97. aJDSjCrossRefGoogle ScholarPubMed
Mickley, G. A., Ferguson, J. L., Mulvihill, M. A.Nemeth, T. J. (1991) Early neural grafts transiently reduce the behavioral effects of radiationinduced fascia dentata granule cell hypoplasia. Brain Research 1991 550:2434. aJDSGoogle ScholarPubMed
Moffett, S. B. (1991) Reinnervation controls target organ regeneration in the snail Melampus. In: Proceedings of the symposium on molluscan neurobiology, ed. Kits, K. S., Boer, H. H.Joosse, J.. North Holland Publishing Company. SBMGoogle Scholar
Moffett, S. B. (1992) Mating behavior in the pulmonate snail Melampus: Can regeneration restore function? In: Neurobiology on invertebrates, ed. Salanki, J.. Acta Biologica Hungarica 43:369–76. SBMGoogle Scholar
Moffett, S. B.Austin, D. F. (1981) Implanted cerebral ganglia produce supernumerary eyes and tentacles in host snails. Journal of Experimental Zoology 216:321–25. SBMCrossRefGoogle Scholar
Moffett, S. B.Ridgeway, R. L. (1988) Structural repair and functional recovery following cerebral ganglion removal in the pulmonate snail Melampus. American Zoologist 28:1109–22. SBMCrossRefGoogle Scholar
Moffett, S. B.Snyder, K. A. (1985) Behavioral recovery associated with central nervous system regeneration in the snail Melampus. Journal of Neurobiology 16:183209. SBMCrossRefGoogle ScholarPubMed
Moghaddam, B., Gruen, R. J., Roth, R. H., Bunney, B. S.Adams, R. N. (1990) Effect of L-glutamate on the release of striatal dopamine: In vivo dialysis and electrochemical studies. Brain Research 518:5560. JPBCrossRefGoogle ScholarPubMed
Mohammed, A. H., Hendriksson, B. G., Soderstrom, S., Ebendal, T., Olsson, T.Seckl, J. R. (1993) Environmental influences on the central nervous system and their implications for the aging rat. Behavioural Brain Research 57:183–91. rDGSCrossRefGoogle ScholarPubMed
Mohammed, A. K., Winblad, B., Ebendahl, T.Larkfors, L. (1990) Environmental influences on behaviour and nerve growth factor in the brain. Brain Research 528:6272. rJDSCrossRefGoogle ScholarPubMed
Montero-Menei, C. N., Pouplard-Barthelaix, A., Gumpel, M.Van Evercooren, A. B. (1992) Pure Schwann cell suspension grafts promote regeneration of the lesioned septo-hippocampal cholinergic pathway. Brain Research 570:198208. aJDSCrossRefGoogle ScholarPubMed
Montgomery, C. T.Robson, J. A. (1993) Implants of cultured Schwann cells support axonal growth in the central nervous system of adult rats. Experimental Neurology 122:107–24. RHB JCrossRefGoogle ScholarPubMed
Montoya, C. P., Astell, S.Dunnett, S. B. (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. Progress in Brain Research 82:459–66. SBDCrossRefGoogle ScholarPubMed
Moolten, F. L., Wells, J. M., Heyman, R. A.Evans, R. M. (1990) Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Human Cene Therapy 1:125–34. aEANCrossRefGoogle ScholarPubMed
Mori, N., Schoenherr, C., Vandenbergh, D. J.Anderson, D. J. (1992) A common silencer element in (he SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9:4554. LCCrossRefGoogle Scholar
Morris, M., Bowers, D., Chatterjee, A.Heilman, K. (1992) Amnesia following a discrete basal forebrain lesion. Brain 115:1827–47. BACrossRefGoogle ScholarPubMed
Morris, R. G. M., Anderson, E., Lynch, C. S.Baudry, M. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist AP5. Nature 319:774–76. aJDSCrossRefGoogle ScholarPubMed
Morris, R. G. M.Kopelman, M. D. (1986) The memory deficits in Alzheimer-type dementia: A review. Quarterly Journal of Experimental Psychology 38a:575602. aJDSGoogle ScholarPubMed
Mudrick, L. A.Baimbridge, K. G. (1991) Hippocampal neurons transplanted into ischemically lesioned hippocampus: Anatomical assessment of survival, maturation and integration. Experimental Brain Research 86:233–47. aJDSCrossRefGoogle ScholarPubMed
Mudrick, L. A., Baimbridge, K. G.Peet, M. J. (1989) Hippoeampal neurons transplanted into ischemically lesioned hippocampus: Electroresponsiveness and re-establishment of circuitries. Experimental Brain Research 76:333–42. aDGS, rJDS, MLWCrossRefGoogle Scholar
Mufson, E. J., Bothwell, M.Kordower, J. H. (1989) Loss of nerve growth factor receptor containing neurons in Alzheimers disease: A quantitative analysis across subregions of the basal forebrain. Experimental Neurology 105:221–32. EJMCrossRefGoogle ScholarPubMed
Mufson, E. J.Kordower, J. H. (1992) Cortical neurons express nerve growth factor in advanced age and Alzheimers disease. Proceedings National Academy Sciences USA 89:569–73. EJMCrossRefGoogle Scholar
Mufson, E. J., Kroin, J. S., Sobreviela, T., Burke, M. A., Kordower, J. H., Penn, R. D.Miller, J. (in press) Intrastriatal infusion of brain-derived neurotrophic factor: Retrograde transport and colocalization with dopamine containing substantia nigra neurons in rat. Experimental Neurology. EJMGoogle Scholar
Mufson, E. J., Labbe, R.Stein, D. G. (1986) Morphologic features of embryonic neocortex grafts in adult rats following frontal cortical ablation. Brain Research 401:162–67. aDGSCrossRefGoogle Scholar
Muir, J. L., Dunnett, S. B., Dobbins, T. W., Everitt, B. J. (1992) Attentional functions of the forebrain cholinergic systems: Effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Experimental Brain Research 89:611–22.aJDSCrossRefGoogle ScholarPubMed
Muir, J. L., Everitt, B. J.Robbins, T. W. (1994) AMPA-induced excitotoxic lesions of the basal forebrain: A significant role for the cortical cholinergic system in attentional function. Journal of Neurosdence 14:2313–26. rJDSGoogle ScholarPubMed
Muldoon, L. L., Pagel, M. A., Neuwelt, E. A.Weiss, D. L. (1994) Characterization of the molecular defect in a feline model for type II Gm2-gangliosidosis (Sandhoff disease). American Journal of Pathology. 144:1109–18. aEANGoogle Scholar
Muller, C. M.Best, J. (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342:427–30. rDGSCrossRefGoogle ScholarPubMed
Muller, H. W.Seifert, W. (1982) A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. Journal of Neurosdence Research 8:195204. rDGSGoogle ScholarPubMed
Mumby, D. C., Wood, E. R.Pinel, J. P. J. (1992) Object recognition memory is only mildly impaired in rats with lesions of the hippocampus and amygdala. Psychobiology 20:1827. rJDSCrossRefGoogle Scholar
Murphy, S.Ac Pearce, B. (1987) Functional receptors for neurotransmitters on astroglial cells. Neurosdence 22:381–94. WJFCrossRefGoogle ScholarPubMed
Murray, M.Goldberger, M. E. (1974) Restitution of function and collateral sprouting in the cat spinal cord: The partially hemisected animal. Journal of Comparative Neurology 158:1936. rDGSGoogle ScholarPubMed
Muzyczka, N. (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Current Topics in Microbiology and Immunology 158:97129. aEANGoogle ScholarPubMed
Naini, A. B., Pezzoli, G., Pullman, S. et al. (1991) Stereotaxic implantation of autologous adrenal medulla into caudate nucleus in four patients with parkinsonism. One-year follow-up. Archives of Neurology 48:813–20. aDCSGoogle Scholar
Naparstek, Y., Cohen, I. R., Fuks, Z.Vlodavsky, I. (1984) Activated T lymphocytes produce a matrix-degrading heparin sulphate endoglycosidase. Nature 310:241–44. aDGSCrossRefGoogle Scholar
Needels, D. L., Nieto-Sampedro, M.Cotman, C. W. (1986) Induction of a novel neurite-promoting activity in the rat brain following injury. Neurosdence 18:517–26. MN-SCrossRefGoogle Scholar
Needels, D. L., Nieto-Sampedro, M., Whittemore, S. R.Cotman, C. W. (1985) Neuronotrophic activity for ciliary ganglion neurons. Induction following injury to the brain of neonatal, adult and aged rats. Developmental Brain Research 18:275–84. MN-SCrossRefGoogle Scholar
Netto, C. A., Hodges, H., Sinden, J. D., Le Peillet, E., Kershaw, T., Sowinski, P., Meldrum, B. S.Gray, J. A. (1993) Effects of foetal hippocampal field grafts on ischaemic-induced deficits in spatial navigation in the water maze. Neurosdence 54:6992. arJDSCrossRefGoogle ScholarPubMed
Neuhaus, R. J. (1989) Fetal attraction. National Review 41:1213. aDGSGoogle Scholar
Neuwelt, E. A. (1989) Implications of the blood-brain barrier and its manipulation. Vol. I: Basic science aspects. Vol. 2: Clinical aspects. Plenum. aEANGoogle Scholar
Neuwelt, E. A., Barranger, J. A., Brady, R. O., Pagel, M., Furbish, F. S., Quirk, J. M., Mook, G. E.Frenkel, E. P. (1981a) Delivery of hexosaminidase-A to the cerebrum after osmotic modification of the blood-brain barrier. Proceedings of the National Academy of Sciences USA 78:5838–41. aEANCrossRefGoogle Scholar
Neuwelt, E. A., Barranger, J. A., Pagel, M. A., Brady, R. O.Frenkel, E. P. (1984) Delivery of active hexosaminidase-A across the blood-brain barrier in rats. Neurology 34:1012–19. aEANCrossRefGoogle ScholarPubMed
Neuwelt, E. A., Glasberg, M., Diehl, J., Frenkel, E. P.Barnett, P. (1981b) Osmotic blood-brain barrier disruption in posterior fossa of the dog. Journal of Neurosurgery 55:742–48. aEANCrossRefGoogle ScholarPubMed
Neuwelt, E. A., Goldman, D., Dahlborg, S. A., Crossen, J., Ramsey, F., Goldstein, S. M., Braziel, R.Dana, B. (1991a) Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: Prolonged survival and preservation of cognitive function. Journal of Clinical Oncology 9:1580–90. aEANCrossRefGoogle ScholarPubMed
Neuwelt, E. A., Johnson, W. G., Blank, N. K., Pagel, M. A., Masien-McClure, C., McClure, M. J.Wu, P. M. (1985) Characterization of a new model of GM2 gangliosidosis (Sandhoffs disease) in Korat cats. Journal of Clinical Investigation 76:482–90. aEANCrossRefGoogle ScholarPubMed
Neuwelt, E. A., Pagel, M. A.Dix, R. D. (1991b) Delivery of ultravioletinactivated 35S- herpesvirus across an osmotically modified blood-brain barrier. Journal of Neurosurgery 74:475–79. aEANCrossRefGoogle ScholarPubMed
Neuwelt, E. A., Weissleder, R., Nilaver, G., Kroll, R. A., Roman-Goldstein, S., Szumowski, J., Pagel, M. A., Jones, R. S., Remsen, L. G., McCormick, C. I., Shannon, E. M.Muldoon, L. L. (1994) Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34:777–84. rEANGoogle ScholarPubMed
Neuwelt, E. A., Weissleder, R., Nilaver, G., Roman-Goldstein, S., Szumowski, J., Pagel, M. A., Kroll, R. A., Remsen, L. G., McCormick, C. I., Jones, R. S., Shannon, E. M.Muldoon, L. L. (1994) Delivery of virus-sized iron oxide particles to rodent brain. Neurosurgery. 34:777–84. aEANGoogle Scholar
Nicholas, M. K., Antel, J. P., Stefansson, K.Arnason, B. G. W. (1987) Rejection of fetal neocortical neural transplants by H-2 incompatible mice. Journal of Immunology 139:2275–83. JPBCrossRefGoogle ScholarPubMed
Nicolas, M. K., Sagher, O., Hartley, J. P., Stefansson, K.Arnason, B. G. W. (1988) A phenotypic analysis of T-lymphocytes isolated from the brains of mice with allogeneic neural transplants. In: Transplantation into the mammalian CNS1, ed. Gash, D. M.Sladek, J. R. JrElsevier. aDGSGoogle Scholar
Nieto-Sampedro, M. (1988) Growth factor induction and order of events in CNS repair. In: Pharmacological approaches to the treatment of brain and spinal cord injury, ed. Stein, D. G.Sabel, B. A.. Plenum Press. aDGSGoogle Scholar
Nieto-Sampedro, M., Kesslak, J. P., Gibbs, R. B.Cotman, C. W. (1987) Effect of conditioning lesions on transplant survival, connectivity and function: Role of neurotrophic factors. Annals of the New York Academy of Sciences 495:108–19. MN-SCrossRefGoogle ScholarPubMed
Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W., Manthorpe, M., Skaper, S. D., Longo, F. L.Varon, S. (1982) Brain injury causes a timedependent increase in neuronotrophic activity at the lesion site. Science 217:860–61. MN-SCrossRefGoogle ScholarPubMed
Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Cotman, C. W.Varon, S. (1983) Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity. Journal of Neurosdence 3:2219–29. arDGS, MN-SGoogle ScholarPubMed
Nieto-Sampedro, M., Whittemore, S. R., Needels, D. L., Larson, J.Cotman, C. W. (1984) The survival of brain transplants is enhanced by extracts from injured brain. Proceedings of the National Academy of Sciences USA 81:6250–54. aDGSCrossRefGoogle ScholarPubMed
Nilsson, O. G.Bjrklund, A. (1992) Behaviour-dependent changes in acetylcholine release in normal and graft-reinnervated hippocampus: Evidence for host regulation of grafted cholinergic neurons. Neuroscience 49:3344. aJDSCrossRefGoogle ScholarPubMed
Nilsson, O. G., Brundin, P.Bjorklund, A. (1990a) Amelioration of spatial memory impairment by intrahippocampal grafts of mixed septal and raphe tissue in rats with combined cholinergic and serotonergic denervation of the forebrain. Brain Research 515:193206. aDGSCrossRefGoogle ScholarPubMed
Nilsson, O. C., Clarke, D. J., Brundin, P.Bjorklund, A. (1988) Comparison of growth and reinnervation properties of cholinergic neurons from different brain regions grafted to the hippocampus. Journal of Comparative Neurology 268:204–22. aJDSCrossRefGoogle ScholarPubMed
Nilsson, O. C., Kalen, P., Rosengren, E.Bjorklund, A. (1990b) Acetylcholine release from intrahippocampal septal grafts is under control of the host brain. Proceedings of the National Academy of Sciences USA 87:2647–51. aJDSCrossRefGoogle ScholarPubMed
Nilsson, O. C., Leanza, G., Rosenblad, C., Lippa, D. A., Wiley, R. G.Bjorklund, A. (1992) Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport 3:1005–8. arJDSCrossRefGoogle ScholarPubMed
Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. S.Bjorklund, A. (1987) Spatial learning and memory following fimbria-fomix transection and grafting of fetal septal neurons to the hippocampus. Experimental Brain Research 67:195215. aDGSCrossRefGoogle Scholar
Nitta, T.Sato, K. (1994) Specific inhibition of c-sis protein synthesis and cell proliferation with antisense oligodeoxynucleotides in human glioma cells. Neurosurgery 34:309–15. LCCrossRefGoogle ScholarPubMed
Nonneman, A. J., Baisden, R. H., Poole, G. D.Woodruff, M. L. (1992) Effects of fetal hippocampal tissue transplants and removal of the transplants on water maze performance in hippocampectomized rats. Paper presented at the 38th annual meeting of the Southeastern Psychological Association, Knoxville, Tennessee. MLWGoogle Scholar
Nordberg, A.Winblad, B. (1986) Reduced numbers of 3H nicotine and 3H acetylcholine binding sites in frontal cortex of Alzheimer brains. Neuroscience Letters 72:115–21. aJDSCrossRefGoogle ScholarPubMed
Nornes, H., Bjorklund, A.Stenevi, U. (1984) Transplant strategies in spinal cord regeneration. In: Neural transplants: Development and function, ed. Sladek, J. R.Gash, D. M.. Plenum Press. APGoogle Scholar
Nozaki, K., Finklestein, S., Beal, M. F., Uemura, Y.Kikuchi, H. (1993) Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA toxicity in neonatal rats. Journal of Cerebral Blood Flow and Metabolism 13:221–28. rJDSCrossRefGoogle ScholarPubMed
Nozue, R., Kobayashi, A., Sako, A., Satoh, T., Kodama, T., Yamazaki, H., Kurosawa, M., Uemasu, F., Endoh, H.Takagi, Y. (1993) Evidence that cyclosporine causes both intracellular migration and inappropriate urinary excretion of magnesium in rats. Transplantation 55:346–49. aDGSCrossRefGoogle ScholarPubMed
Nunn, J. A.Hodges, H. (1994) Cognitive deficits induced by global cerebral ischaemia: Relationship to brain damage and reversal by transplants. Behavioural Brain Research, 62:4154. rJDSGoogle Scholar
Nunn, J. A., Le Peillet, E., Netto, C. A., Sowinski, P., Hodges, H., Gray, J. A.Meldrum, B. S. (1991a) CAI cell loss produces deficits in learning and memory in the water maze regardless of additional intra- and extrahippocampal damage. Journal of Cerebral Blood Flow and Metabolism Supplement 111 (2):338. aJDSGoogle Scholar
Nunn, J. A., Le Peillet, E., Netto, C. A., Sowinski, P., Hodges, H., Meldrum, B. S. or Gray, J. A. (1991b) CAI cell loss produces deficits in the water maze but not in the radial maze. Society for Neuroscience Abstracts 17:108. arJDSGoogle Scholar
Nunn, J. A., Sowinski, P., Hodges, H., Meldrum, B. S.Gray, J. A. (1993) Neurotoxic CA1 lesions vs 4VO ischaemic lesions: Behavioural comparisons. Society for Neuroscience Abstracts 19:636. rJDSGoogle Scholar
Ogawa, M., Ishikawa, T.Irimajiri, A. (1984) Adrenal chromaffin cells form functional cholinergic synapses in culture. Nature 307:6668. aJDSCrossRefGoogle ScholarPubMed
Okazawa, H. M., Murata, M., Watanabe, M., Kamei, M.Kanazawa, I. (1992) Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic (BDNF) in the striatum. FEBS 3131:138–42. EJMCrossRefGoogle Scholar
OKeefe, J.Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press. arJDSGoogle Scholar
OLeary, D. D. M. (1989) Do cortical areas emerge from a protocortex? Trends in Neuroscience 12:400406. BBSGoogle ScholarPubMed
OLeary, D. D. M.Stanfield, B. B. (1989) Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: Experiments utilizing fetal cortical transplants. Journal of Neuroscience 9:2230–46. BBSCrossRefGoogle ScholarPubMed
Olsen, I., Muir, H., Smith, R., Fensom, A.Watt, D. J. (1983) Direct enzyme transfer from lymphocytes is specific. Nature 306:7577. aEANCrossRefGoogle ScholarPubMed
Olson, L., Backlund, E. O., Ebendal, R., Freedman, R., Hamberger, B., Hansson, P., Hoffer, B., Lindblom, U., Meyerson, B., Stromberg, I., Sydow, O.Seiger, A. (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinsons disease. Archives of Neurology 48:373–81. aDGSCrossRefGoogle Scholar
Olton, D. S. (1983) Memory functions in the hippocampus. In: Neurobiology of the hippocampus, ed. Seifert, W.. Academic Press. aJDSGoogle Scholar
Olton, D. S., Becker, J. T.Handelman, G. E. (1979) Hippocampus, space and memory. Behavioral and Brain Sciences 2:315–65. arJDSCrossRefGoogle Scholar
Olton, D. S., Wenk, G. L., Church, R. M.Meek, W. H. (1988) Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia 26:307–18. aJDSCrossRefGoogle ScholarPubMed
OMalley, E. K., Sieber, B. A., Black, I. B.Dreyfus, C. F. (1992) Mesencephalic type I astrocytes mediate the survival of substantia nigra dopaminergic neurons in culture. Brain Research 582:6570. rDGSGoogle ScholarPubMed
Ono, T., Fujino, Y., Tsuchiya, T.Tsuda, M. (1990) Plasmid DNAs directly injected into mouse brain with lipofectin can be incorporated and expressed by brain cells. Neuroscience Letters 117:259–63. aEAN, LCCrossRefGoogle ScholarPubMed
Page, K. J., Everitt, B. J., Robbins, T. W., Marston, H. M.Wilkinson, L. S. (1991) Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA- and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: Differential dependence on cholinergic neuronal loss. Neuroscience 43:457–72. aJDSCrossRefGoogle ScholarPubMed
Paillard, J. (1976) Reflexions sur lusage du concept de plasticite en neurobiologie. Journal de Psychologie 1:3347. J-CCGoogle Scholar
Paino, C. L.Bunge, M. B. (1991) Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Experimental Neurology 114:254–57. RHBCrossRefGoogle ScholarPubMed
Paino, C. L., Pardo, B.Mena, M. A. (1992) L-dopa toxicity in embryonic mesencephalic neurons prevented by ascorbic acid. Restorative Neurology and Neuroscience 4:167. KS-CGoogle Scholar
Palella, T. D., Hidaka, Y., Silverman, L. J., Levine, M., Glorioso, J.Kelley, W. N. (1989) Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vector. Gene 80:137. aEANCrossRefGoogle ScholarPubMed
Palella, T. D., Silverman, L. J., Schroll, C. T., Homa, F. L., Levine, M.Kelley, W. N. (1988) Herpes simplex virus-mediated human hypoxanthine -guanine phosphoribosyltransferase gene transfer into neuronal cells. Molecular and Cellular Biology 8:457–60. aEANGoogle ScholarPubMed
Palmer, T. D., Rosman, G. J., Osbome, W. R. A.Miller, A. D. (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proceedings of the National Academy of Sciences USA 88:1330–34. aEAN, LCCrossRefGoogle ScholarPubMed
Parada, L. F., Tsoulfas, P., Tessarollo, L., Blair, J., Reid, S. W.Soppet, D., eds. (1992) The trk family of tyrosine hinases: Receptors for NGFrelated netirotrophins. Cold Spring Harbor Laboratory Press. EJMGoogle Scholar
Park, D. C., Puglisi, J. T.Smith, A. D. (1986) Memory for pictures: Does an age-related decline exist? Psychology and Aging 1:1117. MPLCrossRefGoogle ScholarPubMed
Pearson, R. C. A.Powell, T. P. S. (1989) The neuroanatomy of Alzheimers disease. Reviews in the Neurosdences 2:101–22. SBDCrossRefGoogle Scholar
Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L.Wyatt, R. J. (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–47. aDCS, aJDSCrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, C.Tomlinson, B. E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189. aJDSCrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Smith, C. J., Purohit, D., Bonham, J., Dick, D. J., Candy, J. M., Edwardson, J. A.Fairbairn, A. (1986) Cholinergic receptors in cognitive disorders. Canadian Journal of Neurological Sciences 13:521–27. aJDSCrossRefGoogle ScholarPubMed
Peterson, D. I., Price, L.Small, C. S. (1989) Autopsy findings in a patient who had an adrenal-to-brain transplant for Parkinsons disease. Neurology 39:235–38. aDGSCrossRefGoogle Scholar
Pettit, M. J.Schwark, H. D. (1993) Receptive field reorganization in dorsal column nuclei during temporary denervation. Science 262:2054–56. BBSCrossRefGoogle ScholarPubMed
Philip, R., Liggitt, D., Philip, M., Dazin, P.Debs, R. (1993) In vivo gene delivery. Journal of Biological Chemistry 268:16087–90. LCCrossRefGoogle ScholarPubMed
Pick, H. L., van den Broek, P.Knill, D. C., eds. (1992) Cognition. American Psychological Association. MPLGoogle Scholar
Pirch, J. H., Turco, K.Rucker, H. K. (1992) A role for acetylcholine in conditioning-related responses of rat frontal cortex neurons: Microiontopheretic evidence. Brain Research 586:1926. aJDSCrossRefGoogle Scholar
Plunkett, R. J., Bankiewicz, K. S., Cummins, A., Miletich, R. S., Schwartz, J. P.Oldfield, E. H. (1990) Long term evaluation of hemiparkinsonian monkeys after adrenal medullary autografting and cavitation alone. Journal of Neurosurgery 73:918–26. rDGSCrossRefGoogle ScholarPubMed
Pollack, I. F.Lund, R. D. (1990) The blood-brain barrier protects foreign antigens in the brain from immune attack. Experimental Neurology 108:114–21. aDGSCrossRefGoogle ScholarPubMed
Sloan, D. J., Wood, M. J. & Charlton, H. M. (1991) The immune response to intracerebral neural grafts. Trends in Neuroscience 14(8):341–46. [aDGS]CrossRefGoogle ScholarPubMed
Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Alden, S., Hartwieg, E. A. & Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:3351. [aJDS]CrossRefGoogle ScholarPubMed
Sofroniew, M. V., Cooper, J. D., Svendsen, C. N., Crossman, P., Ip, N. Y., Lindsay, R. M., Zafra, F. & Lindholm, D. (1993) Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3. Journal of Neuroscience 13:5263–76. [WJF]CrossRefGoogle Scholar
Sollars, P. J. & Pickard, G. E. (1994) Neural heterografts as a model for the study of mammalian circadian behavior. In: Neural transplantation, CNS neuronal injury/regeneration, ed. Marwah, J., Teitelbaum, P. & Prasad, K. N.. CRC Press. [RS]Google Scholar
Sotelo, C. & Alvarado-Mallart, R. M. (1987a) Cerebellar transplantations in adult mice with heredo-degenerative ataxia. Annals of the New York Academy of Sciences 495:242–67. [aDGS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1987b) Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20:122. [aDGS, arJDS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1987c) Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature 327:421–23. [PS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1991) The reconstruction of cerebellar circuits. Trends in Neuroscience 14:350–55. [aDGS, aJDS, PS]CrossRefGoogle ScholarPubMed
Sotelo, C., Alvarado-Mallart, R.-M., Frain, M., & Vemet, M. (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. Journal of Neuroscience 14:124–33. [PS]CrossRefGoogle ScholarPubMed
Spaete, R. R. & Frenkel, N. (1982) The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295304. [aEAN]CrossRefGoogle ScholarPubMed
Spencer, D. D., Robbins, R. J., Noftolin, F., Marek, K. L., Vollmer, T., Leranth, C., Roth, R. H., Price, L. H., Gjedde, A., Bunney, B. S., Sass, K. J., Elsworth, J. D., Kier, E. L., Makuch, R., Hotter, P. B. & Redmonds, D. E. Jr, (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. New England Journal of Medicine 327:1541–48. [aDGS, WJF]CrossRefGoogle ScholarPubMed
Spirduso, W. W., Cilliam, P. E., Schallert, T., Upchurch, M., Vaughn, D. M. & Wilcox, R. E. (1985) Reactive capacity: A sensitive behavioral marker of movement initiation and nigrostriatal dopamine function. Brain Research 335:4554. [TS]CrossRefGoogle ScholarPubMed
Springer, J. E., Collier, T. J., Sladek, J. R. Jr. & Loy, R. (1988) Transplantation of male mouse submaxillary gland increases survival of axotomizcd basal forebrain neurons. Journal of Neuroscience Research 19:291–96. [MLW]CrossRefGoogle ScholarPubMed
Squire, L. R. (1986) Mechanisms of memory. Science 232:1612–19. [aJDS]CrossRefGoogle ScholarPubMed
Squire, L. R., Amaral, D. G. & Press, G. A. (1990) Magnetic resonance imaging of the hippocampal formation and mamillary nuclei distinguish medial temporal lobe and diencephalic amnesia. Journal of Neuroscience 10:3110–17. [aJDS]CrossRefGoogle ScholarPubMed
Squire, L. R., Cohen, N. J. & Nadel, L. (1984) The medial temporal region and memory consolidation: A new hypothesis. In: Memory consolidation, ed. Weingartner, H. & Parker, E.. Erlbaum. [aJDS]Google Scholar
Squire, L. R. & Davis, H. P. (1981) The pharmacology of memory: A neurobiological perspective. Annual Review of Pharmacology and Toxicology 21:323–56. [HPD]CrossRefGoogle ScholarPubMed
Sripanidkulchai, K. & Wyss, J. M. (1986) Thalmic projections to retrosplenial cortex in the rat. Journal of Comparative Neurology 254:143–65. [YJL]CrossRefGoogle Scholar
Stanfield, B. B. & O'Leary, D. D. M. (1985) Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature 313:135–37. [BBS]CrossRefGoogle Scholar
Steece-Collier, K., Collier, T. J., Sladek, C., Sladek, J. R. Jr (1990) Chronic levodopa impairs morphological development of grafted embryonic neurons. Experimental Neurology 110:201–8. [aDGS, SBD, KS-C]CrossRefGoogle Scholar
Steece-Collier, K., Junn, F. S., Collier, T. J. & Sladek, J. R. Jr, (1992) Continued study of the interaction of chronic levodopa with embryonic dopamine neuron grafts: The potential reversibility of deleterious effects. Restorative Neurology and Neuroscience 4:180. [KS-C]Google Scholar
Stein, C. A. & Cheng, Y.-C. (1993) Antisense oligonucleotides as therapeutic agents: Is the bullet really magical? Science 261:1004–12. [LC]CrossRefGoogle ScholarPubMed
Stein, D. G. (1985) Fetal brain tissue transplant techniques: A cautionary note. Neurobiology of Aging 6:157–60. [aDGS]CrossRefGoogle Scholar
Stein, D. G. (1988) Practical and theoretical issues in the use of fetal brain tissue transplants to promote recovery from brain injury. In: Brain injury and recovery, ed. Finger, S., Levere, T. E., Almli, C. R. & Stein, D. G.. Plenum Press. [arDGS, NWB]Google Scholar
Stein, D. G., Labbe, R., Attella, M. J. & Rakowsky, H. A. (1985) Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex. Behavioral and Neural Biology 44:266–77. [aDGS, RW]CrossRefGoogle ScholarPubMed
Stein, D. G. & Mufson, E. J. (1987) Morphological and behavioral characteristics of embryonic brain tissue transplants in adult, braindamaged subjects. In: Cell and tissue transplantation into the adult brain, ed. Azmitia, E. C. & Björklund, A.. Annals of the New York Academy of Sciences 495:444–65. [aDGS]CrossRefGoogle ScholarPubMed
Stein, D. G. & Sabel, B. A. (1988) Pharmacological, approaches to the treatment of brain and spinal cord injury. Plenum Press. [arDGS]CrossRefGoogle Scholar
Stenevi, U., Björklund, A., & Svengaard, N. A. (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Research 114:120. [aJDS]CrossRefGoogle Scholar
Steriade, M., Gloor, P., Llinas, R. R., Lopes da, Silva F. H. & Mesulam, M. M. (1990) Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology 76:481508. [aJDS]CrossRefGoogle ScholarPubMed
Stoddard, S. L., Ahlskog, J. E., Kelly, P. J., Tyce, G. M., VanHeerden, J. A., Zinmeister, A. R. & Carmichael, S. W. (1989) Decreased adrenal medullary catecholamines in adrenal transplanted Parkinsonian patients compared to nephrectomy patients. Experimental Neurology 104:218–22. [aDGS]CrossRefGoogle ScholarPubMed
Stokes, B. T., Reier, P. J. (1992) Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Experimental Neurology 116:112. [AP]CrossRefGoogle Scholar
Stramm, L., Wolfe, J., Schuchman, E., Haskins, M., Patterson, D. & Aguirre, G. (1990) B-glucoronidase mediated pathway essential for retinal pigment epithelial degradation of glycosaminoglycans: Disease expression and in vitro disease correction using retroviral mediated DNA transfer. Experimental Eye Research 50:521–32. [CMS]CrossRefGoogle Scholar
Straus, S. E. (1984) Adenovirus infections in humans. In: The adenoviruses, ed. Ginsberg, H. S.. Plenum Press. [aEAN]Google Scholar
Stromberg, I., Björklund, L., Johansson, M., Tomac, A., Collins, F., Olson, L., Hoffer, B. & Humpel, C. (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Experimental Neurology 124:401–12. [rDGS]CrossRefGoogle Scholar
Sugimachi, K., Izawa, K., Nakamura, K., Kimura-Iwasaki, K., Yamaguchi, M., Nakagawa, H. & Oshino, N. (1992) Impairment of working memory by neuronal degeneration with NMDA in rat hippocampal CA1. Behavioural Pharmacology 3:379–85. [aJDS]CrossRefGoogle Scholar
Sutherland, R. J., Whishaw, I. Q. & Kolb, B. (1988) Contributions of cingulate cortex to two forms of spatial learning and memory. Jounal of Neuroscience 8:1863–72. [YJL]CrossRefGoogle ScholarPubMed
Svendsen, C. N. (1993) Gene therapy: A hard graft for neuroscientists? Trends in Neuroscience 16:339–40. [CNS]CrossRefGoogle ScholarPubMed
Szatkowski, M. & Schlue, W.-R. (1992) Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Glia 5:193200. [rDGS]CrossRefGoogle ScholarPubMed
Szentagothai, J. (1975) The “module-concept” in cerebral cortex architecture. Brain Research 95:475–96. [J-CC]CrossRefGoogle Scholar
Takahashi, N., Kawamura, M., Shinotou, H., Hirayama, K., Kaga, K. & Shindo, M. (1992) Pure word deafness due to left hemisphere damage. Cortex 28:295303. [rDGS]CrossRefGoogle ScholarPubMed
Takashima, H., Poltorak, M., Becker, J. B. & Freed, W. J. (1992) Effects of adrenal medulla grafts on plasma catecholaminos and rotational behavior. Experimental Neurology 118:2434. [WJF]CrossRefGoogle ScholarPubMed
Takeda, A., Onadera, H., Sugimoto, A., Kogure, K., Obinata, M. & Shibahara, S. (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischacmia. Neuroscience 55:2331. [rJDS]CrossRefGoogle Scholar
Tarricone, B. J., Keim, S. R., Simon, J. R. & Low, W. C. (1991) Intrahippocampal transplants of septal cholinergic neurons: High-affinity choline uptake and spatial memory function. Brain Research 548:5562. [YJL]CrossRefGoogle ScholarPubMed
Tarricone, B. J., Simon, J. R. & Low, W. C. (1993) Intrahippocampal transplants of septal cholinergic neurons: Choline acetyltransferasc activity, muscarinic receptor binding and spatial memory function. Brain Research 632:4147. [YJL]CrossRefGoogle ScholarPubMed
Taylor, J. R., Elsworth, J. D., Roth, R. H., Collier, T. J., Sladek, J. R. Jr. & Redmond, D. E. Jr, (1990) Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. In: Neural transplantation from molecular basis to clinical applications, ed. Dunnett, S. B. & Richards, S.-J.. Elsevier. [aDGS]CrossRefGoogle Scholar
Terry, R., Masliah, E., Salmon, D., Butters, N., DoTeresa, R., Hill, R., Hansen, L., & Katzman, R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annak of Neurology 30:572–80. [BA]CrossRefGoogle ScholarPubMed
Thomas, M., Makeh, I., Briand, P., Kahn, A. & Skala, H. (1993) Determinants of the brain-specific expression of the rat aldolase C gene: Ex vivo and in vivo analysis. European Journal of Biochemistry 218:143–51. [LC]CrossRefGoogle ScholarPubMed
Thomas, P. K., Young, E. & King, R. H. (1989) Sandhoff disease mimicking adult-onset bulbospinal neuronopathy. Journal of Neurology, Neurosurgery and Psychiatry 52:1103–6. [DAS]CrossRefGoogle ScholarPubMed
Thompson, W. G. (1890) Successful brain grafting. New York Medical Journal 51:701–2. [aJDS]Google Scholar
Tonder, N., Aznar, S., Johansen, F. F., Diemer, N. H. & Zimmer, J. (1992) Fascia dentata transplants in axon-sparing lesions of the adult rat hippocampus are susceptible to cerebral ischemia. Restorative Neurology and Neurosdence 4:216. [rJDS]Google Scholar
Tøonder, N., Søorensen, T. & Zimmer, J. (1990) Grafting of CA3 neurons to excitotoxic axon-sparing lesions of the hippocampal CA3 area in adult rats. Progress in Brain Research 83:391409. [arJDS]CrossRefGoogle Scholar
Tøonder, N., Søorensen, T., Zimmer, J., JøOrgenson, M. B., Johanson, F. F. & Diemer, N. H. (1989) Neural grafting to ischemic lesions of the adult rat hippocampus. Experimental Brain Research 74:512–26. [aJDS]CrossRefGoogle Scholar
Torres, E. M., Perry, T. A., Blokland, A., Wilkinson, L. S., Wiley, R. G., Lappi, D. A. & Dunnett, S. B. (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neurosdence. In press. [SBD]Google Scholar
Toumane, A., Durkin, T., Marighetto, A. & Jaffard, R. (1989) The durations of hippocampal and cortical cholinergic activation induced by spatial discrimination testing of mice in an eight-arm radial maze decrease as a function of acquisition. Behavioral and Neural Biology 52:279–84. [YJL]CrossRefGoogle Scholar
Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I. & Hellstrom, K. E. (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–15. [rEAN]CrossRefGoogle ScholarPubMed
Tremblay, N., Warren, R. A. & Dykes, R. W. (1990) Electrophysiological studies of acerylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli. Journal of Neurophysiology 64:1212–22. [aJDS]CrossRefGoogle ScholarPubMed
Turner, J. J., Hodges, H., Sinden, J. D. & Gray, J. A. (1992) Comparison of radial maze performance of rats after ibotenate and quisqualate lesions of the forebrain cholinergic projection system: Effects of pharmacological challenge and changes in training regimen. Behavioural Pharmacology 3:359–74. [aJDS]CrossRefGoogle Scholar
Tuszynski, M. H., Buzsaki, G. & Gage, F. H. (1990) Nerve growth factor infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septohippocampal projection. Neurosdence 36:3344. [aJDS]CrossRefGoogle ScholarPubMed
Tweedle, C. D., Smithson, K. G. & Hatton, G. I. (1993) Rapid synaptic changes and bundling in the supraoptic dendritic zone of the perfused rat brain. Experimental Neurology 124:200207. [WJF]CrossRefGoogle ScholarPubMed
Valentino, R. J. & Dingledine, R. (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. Journal of Neurosdence 1:784–92. [aJDS]Google ScholarPubMed
Vanderwolf, C. H., Fine, A. & Cooley, R. K. (1990) Intracortical grafts of embryonic basal forebrain tissue restore low voltage fast activity in rats with basal forebrain lesions. Experimental Brain Research 81:426–32. [aJDS]CrossRefGoogle ScholarPubMed
Van der Zee, E. A., Streefland, C., Strosberg, A. D., Schroder, H. & Luiten, P. G. M. (1992) Visualization of cholinoceptive neurons in the rat neocortex: Colocalization of muscarinic and nicotinic acetylcholine receptors. Molecular Brain Research 14:326–36. [aJDS]CrossRefGoogle ScholarPubMed
Van Evergooren, A. B., Gansmuller, A., Duhamel, E., Pascal, F. & Gumpel, M. (1992) Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. Journal of Neuroimmunology 40:235–42. [RHB]CrossRefGoogle Scholar
Varmus, H. (1988) Retroviruses. Science 240:1427–35. [aEAN]CrossRefGoogle ScholarPubMed
Venturelli, D., Travail, S. & Calabretta, B. (1990) Inhibition of T-cell proliferation by a MYB antisense oligomer is accompanied by selective down-regulation of DNA polymerase alpha expression. Proceedings of the National Academy of Sciences USA 87:5963–67. [LC]CrossRefGoogle ScholarPubMed
Vogt, B. A. (1976) Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. Journal of Comparative Neurology 169:6398. [YJL]CrossRefGoogle ScholarPubMed
Vogt, B. A. & Peters, A. (1981) Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology 195:603–25. [YJL]CrossRefGoogle ScholarPubMed
Volpe, B. T., Colombo, P. & Davis, H. P. (1989) Preoperative training modifies radial maze performance in rats with ischemic hippocampal injury. Stroke 20:17001706. [HPD]CrossRefGoogle ScholarPubMed
Volpe, B. T., Davis, H. P., Towle, A. & Dunlap, W. P. (1992) Loss of hippocampal CA1 neurons correlates with memory impairment in rats with ischemic or neurotoxin lesions. Behavioral Neurosdence 106:457–64. [rJDS, HPD]CrossRefGoogle ScholarPubMed
Volpe, B. T. & Petito, C. K. (1985) Dementia with bilateral medial temporal lobe ischemia. Neurology 35:1793–97. [aJDS]CrossRefGoogle ScholarPubMed
Volpe, B. T., Pulsinelli, W. A., Tribuna, J. & Davis, H. P. (1984) Behavioral performance of rats following transient forebrain ischemia. Stroke 15:558–62. [aJDS]CrossRefGoogle ScholarPubMed
Walkley, S. U., Wurzelmann, S., Rattazzi, M. C. & Baker, H. J. (1990) Distribution of ectopic neurite growth and other geometrical distortions of CNS neurons in feline Gm2- gangliosidosis. Brain Research 510:6373. [aEAN]CrossRefGoogle ScholarPubMed
Walsh, C. I., Liu, J. M., Xiao, X., Young, N. S. & Nienhuis, A. W. (1992) Regulated high level expression of a human g-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proceedings of the National Academy of Sciences USA 89:7257–61. [aEAN]CrossRefGoogle Scholar
Wan-Hua, A. Y. (1982) Sex difference in the regeneration of the hypoglossal nerve. Brain Research 238:404–6. [aDGS]CrossRefGoogle Scholar
Wang, J. K. T. (1991) Presynaptic glutamate receptors modulate dopamine release from striatal synaptosomes. Journal of Neurochemistry 57:819–22. [JPB]CrossRefGoogle ScholarPubMed
Wang, J. K. T., Bankiewicz, K. S., Plunkett, R. J., Sheng, J. & Jaeobowitz, D. M. (1991) Transplantation of microglia reduces experimental parkinsonism in rats. In: Intracerebral transplantation in movement disorders, ed. Lindvall, O., Björklund, A. & Widner, H.. Elsevier. [WJF]Google Scholar
Waters, C., Itabashi, H., Apuzzo, J. & Weiner, L. P. (1990) Adrenal to caudate transplantation – postmortem study. Movement Disorders 5:248–50. [aDGS]CrossRefGoogle ScholarPubMed
Weiner, H. L. & Hafler, D. A. (1988) Immunotherapy of Multiple Sclerosis. Annals of Neurology 23:211–22. [JPB]CrossRefGoogle ScholarPubMed
Weiss, P. (1941) Self-differentiation of the basic patterns of coordination. Comparative Psychology Monographs 17:196. [J-CC]Google Scholar
Wells, J., Vietje, B. P., Wells, D. G. & Paradee, J. (1992) Isomorphic activation of astrocytes in the somatosensory thalamus. Clia 5:154–60. [rDGS]Google ScholarPubMed
Weiner, S. A., Dunnett, S. B., Salamone, J. D., MacLean, B. & Iversen, S. D. (1988) Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research 463:192–97. [aJDS]Google Scholar
Welner, S. A., Koty, Z. C. & Boksa, P. (1990) Chromaffin cell grafts to rat cerebral cortex reverse lesion-induced memory deficits. Brain Research 527:163–66. [aJDS]CrossRefGoogle ScholarPubMed
Werth, R. (1992) Recovery of visual function in children with cerebral blindness. International Journal of Psychology 27:392. [RW]Google Scholar
Werth, R. & Moehrenschlager, M. (submitted) Visual field recovery from seotoma in patients with postgenieulate damage. [RW]Google Scholar
Wets, K. M., Sinden, J., Hodges, H., Allen, Y. & Marchbanks, R. M. (1991) Specific brain protein changes correlated with behaviourally effective brain transplants. Journal of Neurochemistry 57:1661–70. [aJDS]CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P. M., Clarke, C. & Azmitia, E. C. (1993) Localization of 5-HT1A receptors to astroglial cells in adult rats: Implications for neuronal-glial interactions and psychoactive drug mechanisms of action. Synapse 14:201–5. [WJF]CrossRefGoogle Scholar
Whitehouse, P. J., Martino, A. H., Antuono, P. G., Lowenstein, P. R., Coyle, J., Price, D. L., Kellar, K. J. (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Research 371:146–51. [aJDS]CrossRefGoogle ScholarPubMed
Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T. & DeLong, M. R. (1982) Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Sdence 215:1237–39. [aJDS]Google ScholarPubMed
Whittemore, S. R., Nieto-Sampedro, M., Needels, D. L. & Cotman, C. W. (1985) Neuronotrophic factors for mammalian brain neurons: Injury induction in neonatal, adult and aged rat brain. Developmental Brain Research 20:169–78. [MN-S]CrossRefGoogle Scholar
Wictorin, K. (1992) Anatomy and connectivity of intrastriatal striatal transplants. Progress in Neurobiology 38:611–39. [aJDS]CrossRefGoogle ScholarPubMed
Widner, H. (1994) NIH neural transplantation funding. Letter to Science 263:737. [rDGS]CrossRefGoogle ScholarPubMed
Widner, H. & Brundin, P. (1988) Immunological aspects of grafting in mammalian central nervous system. A review and speculative synthesis. Brain Research Reviews 13:287324. [aDGS]CrossRefGoogle Scholar
Widner, H. (1993) Sequential intracerebral transplantation of allogeneic and syngeneic fetal dopamine-rich neuronal tissue in adult rats: Will the first graft be rejected? Cell Transplantation 2:307–17. [JPB]CrossRefGoogle ScholarPubMed
Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., Bjürklund, A., Lindvall, O. & Langston, J. W. (1992) Bilateral fetal mesencephalic grafting in two patients with parldnsonism induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). New England Journal of Medicine 327:1556–63. [aDGS, KS-C, WJF]CrossRefGoogle Scholar
Wiley, R. G., Oeltmann, T. N. & Lappi, D. A. (1991) Immunolesioning: Selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Research 562:149–53. [rJDS, SBD]CrossRefGoogle ScholarPubMed
Will, B., Cassel, J.-C. & Kelche, C. (1989) Deleterious and “overshoot” effects of intracerebral transplants. In: Neuronal grafting and Alzheimer's disease, ed. Gage, F., Privat, A. & Christen, Y.. Springer-Verlag. [aDGS]Google Scholar
Will, B., Hefti, F., Pallage, V. & Toniolo, G. (1988) Nerve growth factor effects on CNS neurons and on behavioral recovery from brain damage. In: Pharmacological approaches to the treatment on brain and spinal cord injury, ed. Stein, D. G. & Sabel, B. A.. Plenum Press. [aDGS]Google Scholar
Williams, S. & Johnston, D. (1988) Muscarinic depression of long-term potcntiation in CA3 hippocampal neurons. Science 242:8487. [aJDS]CrossRefGoogle ScholarPubMed
Winn, S. R., Tresco, P. A., Ziclinski, B., Greene, L. A., Jaeger, C. B. & Aebiseher, P. (1991) Behavioral recovery following intrastriatal implantations of microencapsulated PC12 cells. Experimental Neurology 113:322–29. [arEAN]CrossRefGoogle ScholarPubMed
Winn, S. R., Wahlberg, L., Tresco, P. A. & Aebiseher, P. (1989) An encapsulated dopamine-releasing polymer alleviates experimental parkinsonism in rats. Experimental Neurology 105:244–50. [rEAN]CrossRefGoogle ScholarPubMed
Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F. & Bohr, M. (1993) Appeanmce of target-specific guidance information for regenerating axons after CNS lesions. Neuron 11:975–83. [PS]CrossRefGoogle ScholarPubMed
Wolfe, J. H., Dcshinane, S. L. & Fraser, N. W. (1992) Herpesvirus vector gene transfer and expression of-glucuronidase in the central nervous system of MPS VII mice. Nature Cenetics 1:379–84. [aEAN]CrossRefGoogle Scholar
Wolff, J. A., Fisher, L. J., Xu, L., Jinnah, H. A., Langlais, P. J., Iuvone, P. M., O'Malley, K. L., Rosenberg, M. B., Shimohama, S., Friedmann, T. & Gage, F. H. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson's disease. Proceedings of the National Academy of Sciences USA 86:9011–14. [arEAN]CrossRefGoogle Scholar
Wood, E. R., Miiniliy, D. G., Pinel, J. P. J. & Phillips, A. G. (1993) Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behavioural Neuroscience 107:5162. [rJDS]CrossRefGoogle ScholarPubMed
Woodruff, M. L., Baisden, R. H. & Cannon, R. L. (1993) Transplant-induced working memory deficits in hippocampcctoinized rats. Physiology O Behavior 54:579–87. [MLW]CrossRefGoogle ScholarPubMed
Woodruff, M. L., Baisden, R. H. & Nonneman, A. J. (1990) Transplantation of fetal hippocampus may prevent or produce behavioral recovery from hippocampal ablation and recovery persists after removal of the transplant. In: Neural transplantation from molecular basis to clinical applications, ed. Dunnett, S. B. & Richards, S. J.. Elsevier. [aDGS, NWB, MPL, MLW]Google Scholar
Woodruff, M. L., Baisden, R. H., Whittington, D. L. & Benson, A. E. (1987) Embryonic hippocampal grafts ameliorate the deficit in DRL acquisition produced by hippocampectoiny. Brain Research 408:97117. [MLW]CrossRefGoogle Scholar
Woolf, N. J. (1991) Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology 37:475524. [aJDS]CrossRefGoogle ScholarPubMed
Woolf, N. J., Eckenstein, F. & Butcher, L. L. (1983) Cholinergic projections from the basal forebrain to the frontal cortex: A combined fluorescent tracer and inimunohistochemical analysis. Neuroscience Letters 40:9398. [aJDS]CrossRefGoogle Scholar
Winy, S., Baisden, R. H. & Woodruff, M. L. (1991) Neuroehemical anatomy of fetal hippocampus transplanted into large lesion cavities in the adult rat brain. Experimental Neurology 111:3648. [RHB]Google Scholar
Wunderlich, G., Stichel, C. C., Schroeder, W. O. & Muller, H. W. (1994) Transplants of immature astrocytes promote axonal regeneration in the adult rat brain. Clia 10:4958. [rDGS]Google ScholarPubMed
Xavier, G. F., Kershaw, T. R., Gray, J. A. & Sinden, J. D. (1991) Foetal dentate and CA1 subfield transplants and spatial orientation following colchicine lesions of the dentate gyrus. European Journal of Neuroscience Supplement 4:103. [aJDS]Google Scholar
Xu, H., Sumegi, J., Hu, S. X., Banergee, A., Uzvolgyi, E., Klein, G. & Benedict, W. (1991) Intraocular tumor formation of RB reconstituted retinoblastoma cells. Cancer Research 51:4481–85. [CMS]Google ScholarPubMed
Yakovleff, A., Roby-Brami, A., Guezard, B., Mansour, H., Bussel, B. & Privat, A. (1989) Locomotion in rats transplanted with noradrenergic neurons. Brain Research Bulletin 22:115–21. [AP]CrossRefGoogle ScholarPubMed
Yong, V. W., Guthman, M., Kim, S. V., Calne, D. B., Turnbull, I., Watabe, K. & Tomlinson, R. W. W. (1989) Transplantation of human sympathetic neurons and adrenal chromaffin cells in Parkinsonian monkeys: No reversal of clinical symptoms. Journal of Neurological Science 94:5167. [aDGS]CrossRefGoogle ScholarPubMed
Yurek, D., Steece-Collier, K., Collier, T. J. & Sladek, J. R. Jr, (1991) Chronic levodopa impairs the recovery of dopamine agonist-induced rotational behavior following neural grafting. Experimental Brain Research 86:97107. [KS-C]CrossRefGoogle ScholarPubMed
Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E. & Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75:207–16. [DAS]CrossRefGoogle ScholarPubMed
Zhang, J., Medaer, R., Stinissen, P., Hafler, D. & Raus, J. (1993) MHCrestrtcted depletion of human myelin basic protein T cells by T cell vaccination. Science 261:1451–54. [JPB]CrossRefGoogle ScholarPubMed
Zhang, L., Wu, M. & Han, J. (1992) Suppression of audiogenic epileptic seizures by intracerebral injection of a CCK gene vector. Neuroscience Report 3:700702. [LC]Google ScholarPubMed
Zhou, F. C., Li, Y. & Raisman, C. (1989) Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of the adult mouse hippocampi as demonstrated by the use of Thy-1 allelic immunohistochemistry. Effect of timing of transplantation in relation to deafferentation. Neuroscience 32:349–62. [aJDS]CrossRefGoogle Scholar
Zhu, N., Liggitt, D., Liu, Y. & Debs, R. (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261:209–11. [aEAN, LC]CrossRefGoogle ScholarPubMed
Zigmond, M. J. & Strieker, E. M. (1977) Behavioral and neuroehemical effects of central catecholamine depletion: A possible model for “subclinical” brain damage. In: Animal models in psychiatry and neurology, ed. Hanin, I. & Usdin, E.. Pergamon Press. [TS]Google Scholar
Zihl, J. & von Cramon, D. (1979) Restitution of visual function in patients with cerebral blindness. Journal of Neurology, Neurosurgery and Psychiatry 42:312–22. [RW]CrossRefGoogle ScholarPubMed
Zihl, J. & von Cramon, D. (1985) Visual field recovery from scotoma in patients with postgeniculatc damage. Brain 108:335–65. [RW]CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R. & Amaral, D. G. (1986) Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience 6:2950–67. [aJDS]CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. (1992) Enduring memory impairment in monkeys after ischemic damage to the hippocampus. Journal of Neuroscience 12:2582–96. [rJDS]CrossRefGoogle ScholarPubMed
Sloan, D. J., Wood, M. J. & Charlton, H. M. (1991) The immune response to intracerebral neural grafts. Trends in Neuroscience 14(8):341–46. [aDGS]CrossRefGoogle ScholarPubMed
Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Alden, S., Hartwieg, E. A. & Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:3351. [aJDS]CrossRefGoogle ScholarPubMed
Sofroniew, M. V., Cooper, J. D., Svendsen, C. N., Crossman, P., Ip, N. Y., Lindsay, R. M., Zafra, F. & Lindholm, D. (1993) Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3. Journal of Neuroscience 13:5263–76. [WJF]CrossRefGoogle Scholar
Sollars, P. J. & Pickard, G. E. (1994) Neural heterografts as a model for the study of mammalian circadian behavior. In: Neural transplantation, CNS neuronal injury/regeneration, ed. Marwah, J., Teitelbaum, P. & Prasad, K. N.. CRC Press. [RS]Google Scholar
Sotelo, C. & Alvarado-Mallart, R. M. (1987a) Cerebellar transplantations in adult mice with heredo-degenerative ataxia. Annals of the New York Academy of Sciences 495:242–67. [aDGS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1987b) Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20:122. [aDGS, arJDS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1987c) Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature 327:421–23. [PS]CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1991) The reconstruction of cerebellar circuits. Trends in Neuroscience 14:350–55. [aDGS, aJDS, PS]CrossRefGoogle ScholarPubMed
Sotelo, C., Alvarado-Mallart, R.-M., Frain, M., & Vemet, M. (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. Journal of Neuroscience 14:124–33. [PS]CrossRefGoogle Scholar
Spaete, R. R. & Frenkel, N. (1982) The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295304. [aEAN]CrossRefGoogle ScholarPubMed
Spencer, D. D., Robbins, R. J., Noftolin, F., Marek, K. L., Vollmer, T., Leranth, C., Roth, R. H., Price, L. H., Gjedde, A., Bunney, B. S., Sass, K. J., Elsworth, J. D., Kier, E. L., Makuch, R., Hotter, P. B. & Redmonds, D. E. Jr, (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. New England Journal of Medicine 327:1541–48. [aDGS, WJF]CrossRefGoogle ScholarPubMed
Spirduso, W. W., Cilliam, P. E., Schallert, T., Upchurch, M., Vaughn, D. M. & Wilcox, R. E. (1985) Reactive capacity: A sensitive behavioral marker of movement initiation and nigrostriatal dopamine function. Brain Research 335:4554. [TS]CrossRefGoogle ScholarPubMed
Springer, J. E., Collier, T. J., Sladek, J. R. Jr, & Loy, R. (1988) Transplantation of male mouse submaxillary gland increases survival of axotomizcd basal forebrain neurons. Journal of Neuroscience Research 19:291–96. [MLW]CrossRefGoogle ScholarPubMed
Squire, L. R. (1986) Mechanisms of memory. Science 232:1612–19. [aJDS]CrossRefGoogle ScholarPubMed
Squire, L. R., Amaral, D. G. & Press, G. A. (1990) Magnetic resonance imaging of the hippocampal formation and mamillary nuclei distinguish medial temporal lobe and diencephalic amnesia. Journal of Neuroscience 10:3110–17. [aJDS]CrossRefGoogle ScholarPubMed
Squire, L. R., Cohen, N. J. & Nadel, L. (1984) The medial temporal region and memory consolidation: A new hypothesis. In: Memory consolidation, ed. Weingartner, H. & Parker, E.. Erlbaum. [aJDS]Google Scholar
Squire, L. R. & Davis, H. P. (1981) The pharmacology of memory: A neurobiological perspective. Annual Review of Pharmacology and Toxicology 21:323–56. [HPD]CrossRefGoogle ScholarPubMed
Sripanidkulchai, K. & Wyss, J. M. (1986) Thalmic projections to retrosplenial cortex in the rat. Journal of Comparative Neurology 254:143–65. [YJL]CrossRefGoogle Scholar
Stanfield, B. B. & O'Leary, D. D. M. (1985) Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature 313:135–37. [BBS]CrossRefGoogle Scholar
Steece-Collier, K., Collier, T. J., Sladek, C., Sladek, J. R. Jr. (1990) Chronic levodopa impairs morphological development of grafted embryonic neurons. Experimental Neurology 110:201–8. [aDGS, SBD, KS-C]CrossRefGoogle Scholar
Steece-Collier, K., Junn, F. S., Collier, T. J. & Sladek, J. R. Jr, (1992) Continued study of the interaction of chronic levodopa with embryonic dopamine neuron grafts: The potential reversibility of deleterious effects. Restorative Neurology and Neuroscience 4:180. [KS-C]Google Scholar
Stein, C. A. & Cheng, Y.-C. (1993) Antisense oligonucleotides as therapeutic agents: Is the bullet really magical? Science 261:1004–12. [LC]CrossRefGoogle ScholarPubMed
Stein, D. G. (1985) Fetal brain tissue transplant techniques: A cautionary note. Neurobiology of Aging 6:157–60. [aDGS]CrossRefGoogle Scholar
Stein, D. G. (1988) Practical and theoretical issues in the use of fetal brain tissue transplants to promote recovery from brain injury. In: Brain injury and recovery, ed. Finger, S., Levere, T. E., Almli, C. R. & Stein, D. G.. Plenum Press. [arDGS, NWB]Google Scholar
Stein, D. G., Labbe, R., Attella, M. J. & Rakowsky, H. A. (1985) Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex. Behavioral and Neural Biology 44:266–77. [aDGS, RW]CrossRefGoogle ScholarPubMed
Stein, D. G. & Mufson, E. J. (1987) Morphological and behavioral characteristics of embryonic brain tissue transplants in adult, braindamaged subjects. In: Cell and tissue transplantation into the adult brain, ed. Azmitia, E. C. & Björklund, A.. Annals of the New York Academy of Sciences 495:444–65. [aDGS]CrossRefGoogle ScholarPubMed
Stein, D. G. & Sabel, B. A. (1988) Pharmacological, approaches to the treatment of brain and spinal cord injury. Plenum Press. [arDGS]CrossRefGoogle Scholar
Stenevi, U., Björklund, A., & Svengaard, N. A. (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Research 114:120. [aJDS]CrossRefGoogle Scholar
Steriade, M., Gloor, P., Llinas, R. R., Lopes da, Silva F. H. & Mesulam, M. M. (1990) Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology 76:481508. [aJDS]CrossRefGoogle ScholarPubMed
Stoddard, S. L., Ahlskog, J. E., Kelly, P. J., Tyce, G. M., VanHeerden, J. A., Zinmeister, A. R. & Carmichael, S. W. (1989) Decreased adrenal medullary catecholamines in adrenal transplanted Parkinsonian patients compared to nephrectomy patients. Experimental Neurology 104:218–22. [aDGS]CrossRefGoogle ScholarPubMed
Stokes, B. T., Reier, P. J. (1992) Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Experimental Neurology 116:112. [AP]CrossRefGoogle Scholar
Stramm, L., Wolfe, J., Schuchman, E., Haskins, M., Patterson, D. & Aguirre, G. (1990) B-glucoronidase mediated pathway essential for retinal pigment epithelial degradation of glycosaminoglycans: Disease expression and in vitro disease correction using retroviral mediated DNA transfer. Experimental Eye Research 50:521–32. [CMS]CrossRefGoogle Scholar
Straus, S. E. (1984) Adenovirus infections in humans. In: The adenoviruses, ed. Ginsberg, H. S.. Plenum Press. [aEAN]Google Scholar
Stromberg, I., Björklund, L., Johansson, M., Tomac, A., Collins, F., Olson, L., Hoffer, B. & Humpel, C. (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Experimental Neurology 124:401–12. [rDGS]CrossRefGoogle Scholar
Sugimachi, K., Izawa, K., Nakamura, K., Kimura-Iwasaki, K., Yamaguchi, M., Nakagawa, H. & Oshino, N. (1992) Impairment of working memory by neuronal degeneration with NMDA in rat hippocampal CA1. Behavioural Pharmacology 3:379–85. [aJDS]CrossRefGoogle Scholar
Sutherland, R. J., Whishaw, I. Q. & Kolb, B. (1988) Contributions of cingulate cortex to two forms of spatial learning and memory. Jounal of Neuroscience 8:1863–72. [YJL]CrossRefGoogle ScholarPubMed
Svendsen, C. N. (1993) Gene therapy: A hard graft for neuroscientists? Trends in Neuroscience 16:339–40. [CNS]CrossRefGoogle ScholarPubMed
Szatkowski, M. & Schlue, W.-R. (1992) Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Glia 5:193200. [rDGS]CrossRefGoogle ScholarPubMed
Szentagothai, J. (1975) The “module-concept” in cerebral cortex architecture. Brain Research 95:475–96. [J-CC]CrossRefGoogle Scholar
Takahashi, N., Kawamura, M., Shinotou, H., Hirayama, K., Kaga, K. & Shindo, M. (1992) Pure word deafness due to left hemisphere damage. Cortex 28:295303. [rDGS]CrossRefGoogle ScholarPubMed
Takashima, H., Poltorak, M., Becker, J. B. & Freed, W. J. (1992) Effects of adrenal medulla grafts on plasma catecholaminos and rotational behavior. Experimental Neurology 118:2434. [WJF]CrossRefGoogle ScholarPubMed
Takeda, A., Onadera, H., Sugimoto, A., Kogure, K., Obinata, M. & Shibahara, S. (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischacmia. Neuroscience 55:2331. [rJDS]CrossRefGoogle Scholar
Tarricone, B. J., Keim, S. R., Simon, J. R. & Low, W. C. (1991) Intrahippocampal transplants of septal cholinergic neurons: High-affinity choline uptake and spatial memory function. Brain Research 548:5562. [YJL]CrossRefGoogle ScholarPubMed
Tarricone, B. J., Simon, J. R. & Low, W. C. (1993) Intrahippocampal transplants of septal cholinergic neurons: Choline acetyltransferasc activity, muscarinic receptor binding and spatial memory function. Brain Research 632:4147. [YJL]CrossRefGoogle ScholarPubMed
Taylor, J. R., Elsworth, J. D., Roth, R. H., Collier, T. J., Sladek, J. R. Jr, & Redmond, D. E. Jr, (1990) Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. In: Neural transplantation from molecular basis to clinical applications, ed. Dunnett, S. B. & Richards, S.-J.. Elsevier. [aDGS]CrossRefGoogle Scholar
Terry, R., Masliah, E., Salmon, D., Butters, N., DoTeresa, R., Hill, R., Hansen, L., & Katzman, R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annak of Neurology 30:572–80. [BA]CrossRefGoogle ScholarPubMed
Thomas, M., Makeh, I., Briand, P., Kahn, A. & Skala, H. (1993) Determinants of the brain-specific expression of the rat aldolase C gene: Ex vivo and in vivo analysis. European Journal of Biochemistry 218:143–51. [LC]CrossRefGoogle ScholarPubMed
Thomas, P. K., Young, E. & King, R. H. (1989) Sandhoff disease mimicking adult-onset bulbospinal neuronopathy. Journal of Neurology, Neurosurgery and Psychiatry 52:1103–6. [DAS]CrossRefGoogle ScholarPubMed
Thompson, W. G. (1890) Successful brain grafting. New York Medical Journal 51:701–2. [aJDS]Google Scholar
Tonder, N., Aznar, S.Johansen, F. F., Diemer, N. H. & Zimmer, J. (1992) Fascia dentata transplants in axon-sparing lesions of the adult rat hippocampus are susceptible to cerebral ischemia. Restorative Neurology and Neurosdence 4:216. [rJDS]Google Scholar
Tøonder, N., Søorensen, T. & Zimmer, J. (1990) Grafting of CA3 neurons to excitotoxic axon-sparing lesions of the hippocampal CA3 area in adult rats. Progress in Brain Research 83:391409. [arJDS]CrossRefGoogle Scholar
Tøonder, N., Søorensen, T., Zimmer, J., JøOrgenson, M. B., Johanson, F. F. & Diemer, N. H. (1989) Neural grafting to ischemic lesions of the adult rat hippocampus. Experimental Brain Research 74:512–26. [aJDS]CrossRefGoogle Scholar
Torres, E. M., Perry, T. A., Blokland, A., Wilkinson, L. S., Wiley, R. G., Lappi, D. A. & Dunnett, S. B. (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neurosdence. In press. [SBD]Google Scholar
Toumane, A., Durkin, T., Marighetto, A. & Jaffard, R. (1989) The durations of hippocampal and cortical cholinergic activation induced by spatial discrimination testing of mice in an eight-arm radial maze decrease as a function of acquisition. Behavioral and Neural Biology 52:279–84. [YJL]CrossRefGoogle Scholar
Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I. & Hellstrom, K. E. (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–15. [rEAN]CrossRefGoogle ScholarPubMed
Tremblay, N., Warren, R. A. & Dykes, R. W. (1990) Electrophysiological studies of acerylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli. Journal of Neurophysiology 64:1212–22. [aJDS]CrossRefGoogle ScholarPubMed
Turner, J. J., Hodges, H., Sinden, J. D. & Gray, J. A. (1992) Comparison of radial maze performance of rats after ibotenate and quisqualate lesions of the forebrain cholinergic projection system: Effects of pharmacological challenge and changes in training regimen. Behavioural Pharmacology 3:359–74. [aJDS]CrossRefGoogle Scholar
Tuszynski, M. H., Buzsaki, G. & Gage, F. H. (1990) Nerve growth factor infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septohippocampal projection. Neurosdence 36:3344. [aJDS]CrossRefGoogle ScholarPubMed
Tweedle, C. D., Smithson, K. G. & Hatton, G. I. (1993) Rapid synaptic changes and bundling in the supraoptic dendritic zone of the perfused rat brain. Experimental Neurology 124:200207. [WJF]CrossRefGoogle ScholarPubMed
Valentino, R. J. & Dingledine, R. (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. Journal of Neurosdence 1:784–92. [aJDS]Google ScholarPubMed
Vanderwolf, C. H., Fine, A. & Cooley, R. K. (1990) Intracortical grafts of embryonic basal forebrain tissue restore low voltage fast activity in rats with basal forebrain lesions. Experimental Brain Research 81:426–32. [aJDS]CrossRefGoogle ScholarPubMed
Van der Zee, E. A., Streefland, C., Strosberg, A. D., Schroder, H. & Luiten, P. G. M. (1992) Visualization of cholinoceptive neurons in the rat neocortex: Colocalization of muscarinic and nicotinic acetylcholine receptors. Molecular Brain Research 14:326–36. [aJDS]CrossRefGoogle ScholarPubMed
Van Evergooren, A. B., Gansmuller, A., Duhamel, E., Pascal, F. & Gumpel, M. (1992) Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. Journal of Neuroimmunology 40:235–42. [RHB]CrossRefGoogle Scholar
Varmus, H. (1988) Retroviruses. Science 240:1427–35. [aEAN]CrossRefGoogle ScholarPubMed
Venturelli, D., Travail, S. & Calabretta, B. (1990) Inhibition of T-cell proliferation by a MYB antisense oligomer is accompanied by selective down-regulation of DNA polymerase alpha expression. Proceedings of the National Academy of Sciences USA 87:5963–67. [LC]CrossRefGoogle ScholarPubMed
Vogt, B. A. (1976) Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. Journal of Comparative Neurology 169:6398. [YJL]CrossRefGoogle ScholarPubMed
Vogt, B. A. & Peters, A. (1981) Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology 195:603–25. [YJL]CrossRefGoogle ScholarPubMed
Volpe, B. T., Colombo, P. & Davis, H. P. (1989) Preoperative training modifies radial maze performance in rats with ischemic hippocampal injury. Stroke 20:17001706. [HPD]CrossRefGoogle ScholarPubMed
Volpe, B. T., Davis, H. P., Towle, A. & Dunlap, W. P. (1992) Loss of hippocampal CA1 neurons correlates with memory impairment in rats with ischemic or neurotoxin lesions. Behavioral Neurosdence 106:457–64. [rJDS, HPD]CrossRefGoogle ScholarPubMed
Volpe, B. T. & Petito, C. K. (1985) Dementia with bilateral medial temporal lobe ischemia. Neurology 35:1793–97. [aJDS]CrossRefGoogle ScholarPubMed
Volpe, B. T., Pulsinelli, W. A., Tribuna, J. & Davis, H. P. (1984) Behavioral performance of rats following transient forebrain ischemia. Stroke 15:558–62. [aJDS]CrossRefGoogle ScholarPubMed
Walkley, S. U., Wurzelmann, S., Rattazzi, M. C. & Baker, H. J. (1990) Distribution of ectopic neurite growth and other geometrical distortions of CNS neurons in feline Gm2- gangliosidosis. Brain Research 510:6373. [aEAN]CrossRefGoogle ScholarPubMed
Walsh, C. I., Liu, J. M., Xiao, X., Young, N. S. & Nienhuis, A. W. (1992) Regulated high level expression of a human g-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proceedings of the National Academy of Sciences USA 89:7257–61. [aEAN]CrossRefGoogle Scholar
Wan-Hua, A. Y. (1982) Sex difference in the regeneration of the hypoglossal nerve. Brain Research 238:404–6. [aDGS]CrossRefGoogle Scholar
Wang, J. K. T. (1991) Presynaptic glutamate receptors modulate dopamine release from striatal synaptosomes. Journal of Neurochemistry 57:819–22. [JPB]CrossRefGoogle ScholarPubMed
Wang, J. K. T., Bankiewicz, K. S., Plunkett, R. J., Sheng, J. & Jaeobowitz, D. M. (1991) Transplantation of microglia reduces experimental parkinsonism in rats. In: Intracerebral transplantation in movement disorders, ed. Lindvall, O., Björklund, A. & Widner, H.. Elsevier. [WJF]Google Scholar
Waters, C., Itabashi, H., Apuzzo, J. & Weiner, L. P. (1990) Adrenal to caudate transplantation – postmortem study. Movement Disorders 5:248–50. [aDGS]CrossRefGoogle ScholarPubMed
Weiner, H. L. & Hafler, D. A. (1988) Immunotherapy of Multiple Sclerosis. Annals of Neurology 23:211–22. [JPB]CrossRefGoogle ScholarPubMed
Weiss, P. (1941) Self-differentiation of the basic patterns of coordination. Comparative Psychology Monographs 17:196. [J-CC]Google Scholar
Wells, J., Vietje, B. P., Wells, D. G. & Paradee, J. (1992) Isomorphic activation of astrocytes in the somatosensory thalamus. Clia 5:154–60. [rDGS]Google ScholarPubMed
Weiner, S. A., Dunnett, S. B., Salamone, J. D., MacLean, B. & Iversen, S. D. (1988) Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research 463:192–97. [aJDS]Google Scholar
Welner, S. A., Koty, Z. C. & Boksa, P. (1990) Chromaffin cell grafts to rat cerebral cortex reverse lesion-induced memory deficits. Brain Research 527:163–66. [aJDS]CrossRefGoogle ScholarPubMed
Werth, R. (1992) Recovery of visual function in children with cerebral blindness. International Journal of Psychology 27:392. [RW]Google Scholar
Werth, R. & Moehrenschlager, M. (submitted) Visual field recovery from seotoma in patients with postgenieulate damage. [RW]Google Scholar
Wets, K. M., Sinden, J., Hodges, H., Allen, Y. & Marchbanks, R. M. (1991) Specific brain protein changes correlated with behaviourally effective brain transplants. Journal of Neurochemistry 57:1661–70. [aJDS]CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P. M., Clarke, C. & Azmitia, E. C. (1993) Localization of 5-HT1A receptors to astroglial cells in adult rats: Implications for neuronal-glial interactions and psychoactive drug mechanisms of action. Synapse 14:201–5. [WJF]CrossRefGoogle Scholar
Whitehouse, P. J., Martino, A. H., Antuono, P. G., Lowenstein, P. R., Coyle, J., Price, D. L., Kellar, K. J. (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Research 371:146–51. [aJDS]CrossRefGoogle ScholarPubMed
Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T. & DeLong, M. R. (1982) Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Sdence 215:1237–39. [aJDS]Google ScholarPubMed
Whittemore, S. R., Nieto-Sampedro, M., Needels, D. L. & Cotman, C. W. (1985) Neuronotrophic factors for mammalian brain neurons: Injury induction in neonatal, adult and aged rat brain. Developmental Brain Research 20:169–78. [MN-S]CrossRefGoogle Scholar
Wictorin, K. (1992) Anatomy and connectivity of intrastriatal striatal transplants. Progress in Neurobiology 38:611–39. [aJDS]CrossRefGoogle ScholarPubMed
Widner, H. (1994) NIH neural transplantation funding. Letter to Science 263:737. [rDGS]CrossRefGoogle ScholarPubMed
Widner, H. & Brundin, P. (1988) Immunological aspects of grafting in mammalian central nervous system. A review and speculative synthesis. Brain Research Reviews 13:287324. [aDGS]CrossRefGoogle Scholar
Widner, H. (1993) Sequential intracerebral transplantation of allogeneic and syngeneic fetal dopamine-rich neuronal tissue in adult rats: Will the first graft be rejected? Cell Transplantation 2:307–17. [JPB]CrossRefGoogle ScholarPubMed
Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., Bjürklund, A., Lindvall, O. & Langston, J. W. (1992) Bilateral fetal mesencephalic grafting in two patients with parldnsonism induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). New England Journal of Medicine 327:1556–63. [aDGS, KS-C, WJF]CrossRefGoogle Scholar
Wiley, R. G., Oeltmann, T. N. & Lappi, D. A. (1991) Immunolesioning: Selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Research 562:149–53. [rJDS, SBD]CrossRefGoogle ScholarPubMed
Will, B., Cassel, J.-C. & Kelche, C. (1989) Deleterious and “overshoot” effects of intracerebral transplants. In: Neuronal grafting and Alzheimer's disease, ed. Gage, F., Privat, A. & Christen, Y.. Springer-Verlag. [aDGS]Google Scholar
Will, B., Hefti, F., Pallage, V. & Toniolo, G. (1988) Nerve growth factor effects on CNS neurons and on behavioral recovery from brain damage. In: Pharmacological approaches to the treatment on brain and spinal cord injury, ed. Stein, D. G. & Sabel, B. A.. Plenum Press. [aDGS]Google Scholar
Williams, S. & Johnston, D. (1988) Muscarinic depression of long-term potcntiation in CA3 hippocampal neurons. Science 242:8487. [aJDS]CrossRefGoogle ScholarPubMed
Winn, S. R., Tresco, P. A., Ziclinski, B., Greene, L. A., Jaeger, C. B. & Aebiseher, P. (1991) Behavioral recovery following intrastriatal implantations of microencapsulated PC12 cells. Experimental Neurology 113:322–29. [arEAN]CrossRefGoogle ScholarPubMed
Winn, S. R., Wahlberg, L., Tresco, P. A. & Aebiseher, P. (1989) An encapsulated dopamine-releasing polymer alleviates experimental parkinsonism in rats. Experimental Neurology 105:244–50. [rEAN]CrossRefGoogle ScholarPubMed
Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F. & Bohr, M. (1993) Appeanmce of target-specific guidance information for regenerating axons after CNS lesions. Neuron 11:975–83. [PS]CrossRefGoogle ScholarPubMed
Wolfe, J. H., Dcshinane, S. L. & Fraser, N. W. (1992) Herpesvirus vector gene transfer and expression of-glucuronidase in the central nervous system of MPS VII mice. Nature Cenetics 1:379–84. [aEAN]CrossRefGoogle Scholar
Wolff, J. A., Fisher, L. J., Xu, L., Jinnah, H. A., Langlais, P. J., Iuvone, P. M., O'Malley, K. L., Rosenberg, M. B., Shimohama, S., Friedmann, T. & Gage, F. H. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson's disease. Proceedings of the National Academy of Sciences USA 86:9011–14. [arEAN]CrossRefGoogle Scholar
Wood, E. R., Miiniliy, D. G., Pinel, J. P. J. & Phillips, A. G. (1993) Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behavioural Neuroscience 107:5162. [rJDS]CrossRefGoogle ScholarPubMed
Woodruff, M. L., Baisden, R. H. & Cannon, R. L. (1993) Transplant-induced working memory deficits in hippocampcctoinized rats. Physiology O Behavior 54:579–87. [MLW]CrossRefGoogle ScholarPubMed
Woodruff, M. L., Baisden, R. H. & Nonneman, A. J. (1990) Transplantation of fetal hippocampus may prevent or produce behavioral recovery from hippocampal ablation and recovery persists after removal of the transplant. In: Neural transplantation from molecular basis to clinical applications, ed. Dunnett, S. B. & Richards, S. J.. Elsevier. [aDGS, NWB, MPL, MLW]Google Scholar
Woodruff, M. L., Baisden, R. H., Whittington, D. L. & Benson, A. E. (1987) Embryonic hippocampal grafts ameliorate the deficit in DRL acquisition produced by hippocampectoiny. Brain Research 408:97117. [MLW]CrossRefGoogle Scholar
Woolf, N. J. (1991) Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology 37:475524. [aJDS]CrossRefGoogle ScholarPubMed
Woolf, N. J., Eckenstein, F. & Butcher, L. L. (1983) Cholinergic projections from the basal forebrain to the frontal cortex: A combined fluorescent tracer and inimunohistochemical analysis. Neuroscience Letters 40:9398. [aJDS]CrossRefGoogle Scholar
Winy, S., Baisden, R. H. & Woodruff, M. L. (1991) Neuroehemical anatomy of fetal hippocampus transplanted into large lesion cavities in the adult rat brain. Experimental Neurology 111:3648. [RHB]Google Scholar
Wunderlich, G., Stichel, C. C., Schroeder, W. O. & Muller, H. W. (1994) Transplants of immature astrocytes promote axonal regeneration in the adult rat brain. Clia 10:4958. [rDGS]Google ScholarPubMed
Xavier, G. F., Kershaw, T. R., Gray, J. A. & Sinden, J. D. (1991) Foetal dentate and CA1 subfield transplants and spatial orientation following colchicine lesions of the dentate gyrus. European Journal of Neuroscience Supplement 4:103. [aJDS]Google Scholar
Xu, H., Sumegi, J., Hu, S. X., Banergee, A., Uzvolgyi, E., Klein, G. & Benedict, W. (1991) Intraocular tumor formation of RB reconstituted retinoblastoma cells. Cancer Research 51:4481–85. [CMS]Google ScholarPubMed
Yakovleff, A., Roby-Brami, A., Guezard, B., Mansour, H., Bussel, B. & Privat, A. (1989) Locomotion in rats transplanted with noradrenergic neurons. Brain Research Bulletin 22:115–21. [AP]CrossRefGoogle ScholarPubMed
Yong, V. W., Guthman, M., Kim, S. V., Calne, D. B., Turnbull, I., Watabe, K. & Tomlinson, R. W. W. (1989) Transplantation of human sympathetic neurons and adrenal chromaffin cells in Parkinsonian monkeys: No reversal of clinical symptoms. Journal of Neurological Science 94:5167. [aDGS]CrossRefGoogle ScholarPubMed
Yurek, D., Steece-Collier, K., Collier, T. J. & Sladek, J. R. Jr (1991) Chronic levodopa impairs the recovery of dopamine agonist-induced rotational behavior following neural grafting. Experimental Brain Research 86:97107. [KS-C]CrossRefGoogle ScholarPubMed
Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E. & Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75:207–16. [DAS]CrossRefGoogle ScholarPubMed
Zhang, J., Medaer, R., Stinissen, P., Hafler, D. & Raus, J. (1993) MHCrestrtcted depletion of human myelin basic protein T cells by T cell vaccination. Science 261:1451–54. [JPB]CrossRefGoogle ScholarPubMed
Zhang, L., Wu, M. & Han, J. (1992) Suppression of audiogenic epileptic seizures by intracerebral injection of a CCK gene vector. Neuroscience Report 3:700702. [LC]Google ScholarPubMed
Zhou, F. C., Li, Y. & Raisman, C. (1989) Embryonic entorhinal transplants project selectively to the deafferented entorhinal zone of the adult mouse hippocampi as demonstrated by the use of Thy-1 allelic immunohistochemistry. Effect of timing of transplantation in relation to deafferentation. Neuroscience 32:349–62. [aJDS]CrossRefGoogle Scholar
Zhu, N., Liggitt, D., Liu, Y. & Debs, R. (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261:209–11. [aEAN, LC]CrossRefGoogle ScholarPubMed
Zigmond, M. J. & Strieker, E. M. (1977) Behavioral and neuroehemical effects of central catecholamine depletion: A possible model for “subclinical” brain damage. In: Animal models in psychiatry and neurology, ed. Hanin, I. & Usdin, E.. Pergamon Press. [TS]Google Scholar
Zihl, J. & von Cramon, D. (1979) Restitution of visual function in patients with cerebral blindness. Journal of Neurology, Neurosurgery and Psychiatry 42:312–22. [RW]CrossRefGoogle ScholarPubMed
Zihl, J. & von Cramon, D. (1985) Visual field recovery from scotoma in patients with postgeniculatc damage. Brain 108:335–65. [RW]CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R. & Amaral, D. G. (1986) Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience 6:2950–67. [aJDS]CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. (1992) Enduring memory impairment in monkeys after ischemic damage to the hippocampus. Journal of Neuroscience 12:2582–96. [rJDS]CrossRefGoogle ScholarPubMed