Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T01:46:45.726Z Has data issue: false hasContentIssue false

Infants' representations of causation

Published online by Cambridge University Press:  19 May 2011

Stephen A. Butterfill
Affiliation:
Department of Philosophy, University of Warwick, Coventry, CV4 7AL, United Kingdom. [email protected]://www2.warwick.ac.uk/fac/soc/philosophy/people/faculty/butterfill/

Abstract

It is consistent with the evidence in The Origin of Concepts to conjecture that infants' causal representations, like their numerical representations, are not continuous with adults', so that bootstrapping is needed in both cases.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baillargeon, R., Kotovsky, L. & Needham, A. (1995) The acquisition of physical knowledge in infancy. In: Causal cognition. A multidisciplinary debate, ed. Sperber, D. & Premack, D., pp. 79115. Clarendon.Google Scholar
Barrett, T. M., Davis, E. F. & Needham, A. (2007) Learning about tools in infancy. Developmental Psychology 43(22):352–68.CrossRefGoogle ScholarPubMed
Berthier, N. E., De Blois, S., Poirier, C. R., Novak, M. A. & Clifton, R. K. (2000) Where's the ball? Two- and three-year-olds reason about unseen events. Developmental Psychology 36(3):394401.CrossRefGoogle ScholarPubMed
Butterfill, S. (2009) Seeing causes and hearing gestures. Philosophical Quarterly 59(236):405–28.CrossRefGoogle Scholar
Carey, S. (2009) The origin of concepts. Oxford University Press.CrossRefGoogle Scholar
Goldenberg, G. & Hagmann, S. (1998) Tool use and mechanical problem solving in apraxia. Neuropsychologia 36:581–89.CrossRefGoogle ScholarPubMed
Hood, B., Cole-Davies, V. & Dias, M. (2003) Looking and search measures of object knowledge in preschool children. Developmental Science 29(1):6170.Google Scholar
Johnson-Frey, S. H. (2004) The neural bases of complex tool use in humans. Trends in Cognitive Sciences 8(2):71–8.CrossRefGoogle ScholarPubMed
Liberman, A. M. & Mattingly, I. G. (1985) The motor theory of speech perception revised. Cognition 21(1):136.CrossRefGoogle ScholarPubMed
Liberman, A. M. & Mattingly, I. G. (1991) Modularity and the effects of experience. In: Cognition and the symbolic processes: Applied and ecological perspectives, ed. Hoffman, R. R. & Palermo, D. S., pp. 3338. Erlbaum.Google Scholar
Lockman, J. J. (2000) A perception-action perspective on tool use development. Child Development 71(1):137–44.CrossRefGoogle ScholarPubMed
Menzies, P. & Price, H. (1993) Causation as a secondary quality. British Journal for the Philosophy of Science 44(2):187203.CrossRefGoogle Scholar
Michotte, A. (1946/1963) The perception of causality. Trans. Miles, T. R.. Meuthen.Google Scholar
Saxe, R. & Carey, S. (2006) The perception of causality in infancy. Acta Psychologica 123:144–65.CrossRefGoogle ScholarPubMed
Spelke, E. & Van de Walle, G. (1993) Perceiving and reasoning about objects., In: Spatial representation: Problems in philosophy and psychology, ed. Eilan, N., McCarthy, R. & Brewer, B., pp. 132–61. Oxford University Press.Google Scholar
Wang, S.-H., Kaufman, L. & Baillargeon, R. (2003) Should all stationary objects move when hit? Developments in infants' causal and statistical expectations about collision events. Infant Behavior and Development 26:529–67CrossRefGoogle ScholarPubMed
Woodward, J. (2003) Making things happen: A theory of causal explanation. Oxford University Press.Google Scholar