Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T01:31:33.455Z Has data issue: false hasContentIssue false

Dopamine-GABA-cholinergic interactions and negative schizophrenic symptomatology

Published online by Cambridge University Press:  19 May 2011

Martin Sarter
Affiliation:
Department of Psychology, The Ohio State University, Columbus, OH 43210, Electronic mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, R. L., Young, A. B. & Penny, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in the Neurosciences 12:366–74. [IW]CrossRefGoogle ScholarPubMed
Allen, R. M. & Young, S. J. (1978) Phencyclidine-induced psychosis. American Journal of Psychiatry 135:1081–84. [KLRJ]Google ScholarPubMed
Alpert, M. & Rush, M. (1983) Comparison of affects in Parkinson's disease and schizophrenia. Psychopharmacology Bulletin 196:118–20. [RS]Google Scholar
Altman, J., Das, G. D. & Anderson, W. J. (1968) Effects of infantile handling on morphological development of the rat brain: An explanatory study. Developmental Psychology 1:1020. [rJAG]CrossRefGoogle Scholar
Altschuler, L. L., Conrad, A., Kovelman, J. A. & Scheibel, A. (1987) Hippocampal pyramidal cell orientation in schizophrenia. Archives of General Psychiatry 44:1094–98. [LP, AR]CrossRefGoogle Scholar
Alzheimer, A. 1897) Beitrage zür pathologischen Anatomic der Hirnrinde und zür anatomischen Grundlage einiger Psychosen. Monatsschrift der Psychiatric und Neurologie 2:82119. [RS]CrossRefGoogle Scholar
American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders (3rd ed.). American Psychiatric Association. [IJE]Google Scholar
Andreasen, N. C. (1982) Negative symptoms in schizophrenia: Definition and reliability. Archives of General Psychiatry 39:784–88. [MS]CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1985) Positive vs. negative schizophrenia: A critical evaluation. Schizophrenia Bulletin 11:380–89. [HES, RS]CrossRefGoogle ScholarPubMed
Andreasen, N. C. & Olsen, S. (1982) Negative vs. positive schizophrenia. Archives of General Psychiatry 39:789–94. [PHV]CrossRefGoogle Scholar
Angrist, B., Rotrosen, J. & Gershon, S. (1980) Differential effects of amphetamine and neuroleptics vs. positive symptoms in schizophrenia. Psychopharmacology 72:1719. [RS]CrossRefGoogle ScholarPubMed
Anscombe, R. (1987) The disorder of consciousness in schizophrenia. Schizophrenia Bulletin 13:241–60. [aJAG]CrossRefGoogle ScholarPubMed
Archer, T., Mohammed, A. K. & Jarbe, T. U. C. (1986) Context–dependent latent inhibition in taste aversion learning. Scandinavian Journal of Psychology 27:277–84. [REL]CrossRefGoogle ScholarPubMed
Asarnow, R. F., Granholm, E. & Sherman, T. (in press) Span of apprehension in schizophrenia. In: Handbook of schizophrenia, vol. 5: Neuropsychology, psychophysiology, and information processing, ed. Steinhauer, S.Gruzelier, J. H. & Zubin, J.. Elsevier Science Publishers. [KHN, IJE]Google Scholar
Baker, A. G. & Mercier, P. (1982) Extinction of the context and latent inhibition. Learning and Motivation 13:391416. [REL]CrossRefGoogle Scholar
Baker, N. J., Staunton, M., Adler, L. E., Gerhardt, G. A., Drebing, C., Waldo, M., Nagamoto, H. & Freedman, R. (1990) Sensory gating deficits in psychiatric patients: relation to catecholamine metabolites in different diagnostic groups. Biological Psychiatry 27:519–28. [RDO]CrossRefGoogle ScholarPubMed
Balaz, A. M., Capra, S., Kasprow, W. J. & Miller, R. R. (1982) Latent inhibition of the conditioning context: Further evidence of contextual potentiation of retrieval in the absence of appreciable context–US associations. Animal Learning and Behavior 10:242–48. [REL]CrossRefGoogle Scholar
Balogh, R. D. & Merritt, D. W. (1989) Backward masking spatial frequency effects among hypothetically schizotypal individuals. Schizophrenia Bulletin 15:573583. [RDO]Google Scholar
Baron, M. (1986) Genetics of schizophrenia: I. Familial patterns and mode of inheritance. Biological Psychiatry 21:1051–66. [WEC]CrossRefGoogle ScholarPubMed
Baruch, I. (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task and its relevance for the dopamine hypothesis and the dimensional view of psychosis. Ph.D. thesis, University of London. [aJAG]CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R. & Gray, J. A. (1988a) Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Disease 176:598606. [arJAG, KHN, GGD, REL, LJI, REH, PHV]CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R. & Gray, J. A. (1988b) Latent inhibition and “psychotic proneness” in normal subjects. Personality and Individual Differences 9:777–84. [arJAG, REL, PHV]CrossRefGoogle Scholar
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Schwartz, J. M. & Selin, C. E. (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Archives of General Psychiatry 44:221–28. [NRS]CrossRefGoogle ScholarPubMed
Beani, L. & Bianchi, C. (1973) Effect of amantidine on cerebral acetylcholine release and content in the guinea pig. Neuropharmacology 12:283–89. [MS]CrossRefGoogle ScholarPubMed
Beckmann, H. (1991) Schizophrenia and the limbic system. In: Schizophrenia and youth, eds. Eggers, C., Springer–Verlag in press.Google Scholar
Beckmann, H., Gattaz, W. F. & Jakob, H. (1987) Biochemical and neuropathological indices for the aetiology of schizophrenia. In: Search for the causes of schizophrenia, ed. Haffher, H.Gattaz, W. F. & Janzarik, W.. Springer-Verlag. [aJAG]Google Scholar
Beech, A., Powell, T., McWilliam, J. & Claridge, G. (1989) Evidence of reduced “cognitive inhibition” in schizophrenia. British Journal of Clinical Psychology 28:109–17. [aJAG]CrossRefGoogle Scholar
Begleiter, H., Porjesz, B. & Chou, G. L. (1981) Auditory brainstem potentials in chronic alcoholics. Science 211:1064–66. [TP]CrossRefGoogle ScholarPubMed
Bell, D. S. (1965) Comparison of amphetamine psychosis and schizophrenia. British Journal of Psychiatry 111:701–07. [JHW]CrossRefGoogle ScholarPubMed
Bellissimo, A. & Steffy, R. A. (1972) Redundancy-associated deficit in schizophrenic reaction time performance. Journal of Abnormal Psychology 80:299397. [IJE]CrossRefGoogle ScholarPubMed
Benes, F. M. (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophrenia Bulletin 15:585–93. [rJAG, LP, RDO]CrossRefGoogle ScholarPubMed
Beninger, R. J. (1983) The role of dopamine in locomotor activity and learning. Brain Research Reviews 6:173–96. [NAS]CrossRefGoogle Scholar
Berger, T. W. & Thompson, R. F. (1978) Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Research 145:323–46. [NAS]CrossRefGoogle ScholarPubMed
Berman, K. F. & Weinberger, D. R. (1989) Schizophrenia: Brain structure and function. In: Comprehensive textbook of psychiatry 5, vol. 1, ed. Kaplan, H.I. & Saddock, B. J.. Williams & Wilkins. [KLRJ]Google Scholar
Bernstein, A. S., Frith, C. D., Gruzelier, J. H., Patterson, T., Straube, E., Venables, P. H. & Zahn, T. P. (1982) An analysis of the skin conductance orienting response in samples of American, British, and German schizophrenics. Biological Psychology 14:155211. [HES, MED]CrossRefGoogle ScholarPubMed
Bick, P. A. & Kinsbourne, M. (1987) Auditory hallucinations and subvocal speech in schizophrenic patients. The American Journal of Psychiatry 144:222–25. [TP]Google ScholarPubMed
Bird, E., Spokes, E. & Iversen, L. (1980) Dopamine and noradrenaline in post mortem brain in Huntington's disease and schizophrenic illness. Acta Psychiatrica Scandinavica, Supplement 280:6373. [ARC]CrossRefGoogle ScholarPubMed
Birchwood, M., Hallett, S. & Preston, M. (1988) Schizophrenia: An integrated approach to research and treatment. Longman. [GC]Google Scholar
Bland, B. H. (1986) The physiology and pharmacology of the hippocampal formation theta rhythms. Progress in Neurobiology 26:154. [JHW]CrossRefGoogle ScholarPubMed
Bleuler, E. (1934) Textbook of psychiatry. Macmillan. [AFO]Google Scholar
Bleuler, E. (1950) Dementia praecox or the group of schizophrenias. International Universities Press. [AnC, IJE]Google Scholar
Bogerts, B. (1989) The role of limbic and paralimbic pathology in the aetiology of schizophrenia. Psychiatry Research 29:255–56. [PHV]CrossRefGoogle ScholarPubMed
Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia: A morphometric study of brain volume and shrinkage. Archives of General Psychiatry 42:784–91. [aJAG, TP, RS]CrossRefGoogle ScholarPubMed
Bouton, M. E. & Swartzentruber, D. (1986) Analysis of the associative and occasion setting properties of contexts participating in a Pavlovian discrimination. Journal of Experimental Psychology: Animal Behavior Processes 12:333–50. [REL]Google Scholar
Bowen, W. D., Moses, E. L., Tolentino, P. J. & Walker, J. M. (1990) Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. European Journal of Pharmacology 177:111–18. [KLRJ]CrossRefGoogle ScholarPubMed
Bowers, M. B. (1974) Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry 31:5054. [RS]CrossRefGoogle ScholarPubMed
Bracha, H. S. (1987) Asymmetric rotational (circling) behavior, a dopaminerelated asymmetry: Preliminary findings in unmedicated and never-medicated schizophrenic patients. Biological Psychiatry 22:9951003. [rJAG, TSE]CrossRefGoogle ScholarPubMed
Braff, D. L. (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 14:339–43. [HES]CrossRefGoogle Scholar
Braff, D. L. & Geyer, M. A. (1990) Sensorimotor gating and schizophrenia: Human and animal model studies. Archives of General Psychiatry 47:181–88. [NRS]CrossRefGoogle ScholarPubMed
Braff, D. L. & Saccuzzo, D. P. (1985) The time course of information-processing deficits in schizophrenia. American Journal of Psychiatry 142:170–74. [AFO]Google ScholarPubMed
Braff, D. L., Butler, R. W., Jenkins, M. J. & Geyer, M. A. (1989) Wisconsin card sorting in schizophrenia: Neurophysiological correlates. Proceedings of the American College of Neuropsychopharmacology 28:42. [NRS]Google Scholar
Brecher, M., Porjesz, B. & Begleiter, H. (1987) The N2 component of the event-related potential in schizophrenic patients. EEG and Clinical Neurophysiology 66:369–75. [RDO]CrossRefGoogle ScholarPubMed
Broadbent, D. E. (1977) The hidden preattentive processes. American Psychologist 32:109–18. [aJAG]CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C. & Marsh, L. (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Archives of General Psychiatry 43:3642. [aJAG, AR]CrossRefGoogle ScholarPubMed
Brozowski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–32. [aJAG]CrossRefGoogle Scholar
Brunner, R. L., Haggbloom, S. J. & Gazzara, R. A. (1974) Effects of hippocampal X-ir radiation-produced granule–cell agenesis on instrumental runaway performance in rats. Physiology & Behaviour 13:485–94. [rJAG]CrossRefGoogle Scholar
Bruton, C. J., Crow, T. J., Frith, C. D., Johnstone, E. C., Owens, D. C. & Roberts, G. W. (1990) Schizophrenia and the brain. Psychological Medicine 20:285304. [LP]CrossRefGoogle ScholarPubMed
Bunney, B. S. (1984) Antipsychotic drug effects on the electrical activity of dopamine neurons. Trends in Neuroscience 7:212–15. [REH]CrossRefGoogle Scholar
Burton, H. A. & Toga, A. W. (1982) Successive discrimination performance improves with increasing numbers of stimulus preexposures in septal rats. Behavioral and Neural Biology 34:141–51. [RDO]CrossRefGoogle ScholarPubMed
Buscaino, V. M. (1920) Le cause anatoma-pathologiche della manifestatione schizophrenica della demenza precoce. Ric Pathologia Nervus Mental 25:193226. [RS]Google Scholar
Cador, M., Robbins, T. W. & Everitt, B. J. (1989) Involvement of the amydgala in stimulus-reward associations: Interaction with the ventral striatum, Neuroscience 30:7786. [ARC]CrossRefGoogle Scholar
Cain, S. & Routtenberg, A. (1983) Neonatal handling selectively alters the phosphorylation of A 47.000 mol. wt. protein in male rat hippocampus. Brain Research 267:192–95. [rJAG]CrossRefGoogle Scholar
Cannon, T. D. (in press) Genetic and perinatal sources of structural brain abnormalities in schizophrenia. In: Fetal neural development and adult schizophrenia, ed. Mednick, S. A., Cannon, T. D., Barr, C. E. & Lyon, M.. Cambridge University Press. [AR]Google Scholar
Cannon, T. D., Mednick, S. A. & Parnas, J. (1990) Antecedents of predominantly negative and predominantly positive symptoms in a high risk population. Archives of General Psychiatry. 47:622–32. [rJAG, AR]CrossRefGoogle ScholarPubMed
Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179203. [aJAG, KLRJ, NRS, AC]CrossRefGoogle ScholarPubMed
Carlsson, M. & Carlsson, A. (1989a) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine depleted mice. Journal of Neural Transmission 75:221–26. [AC]CrossRefGoogle ScholarPubMed
Carlsson, M. & Carlsson, A. (1989b) Dramatic synergism between MK-801 and clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice. Journal of Neural Transmission 77:6571. [AC]CrossRefGoogle ScholarPubMed
Carlsson, M. & Carlsson, A. (1989c) Marked locomotor stimulation in monoamine-depleted mice following treatment with atropine in combination with clonidine. Journal of Neural Transmission (PD-Sect) 1:317–22. [AC]Google ScholarPubMed
Carlsson, M. & Carlsson, A. (1990) Interfering with glutamatergic neurotransmission by means of NMDA antagonist administration discloses the locomotor stimulatory potential of other transmitter systems. Pharmacology, Biochemistry, & Behavior 36:4550. [AC]CrossRefGoogle ScholarPubMed
Carlsson, M. & Carlsson, A. (in press) Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson's disease. Trends in Neurosciences. [AC]Google Scholar
Carpenter, W. T., Strauss, J. S. & Muleh, S. (1973) Are there pathognomonic symptoms of schizophrenia? An empiric investigation of Schneider's first rank symptoms. Archives of General Psychiatry 28:847–52. [JHW]CrossRefGoogle ScholarPubMed
Carpenter, W. T. Jr., Kirkpatrick, B. & Buchanan, R. W. (1990) Conceptual approaches to the study of schizophrenia. In: Recent advances in schizophrenia, ed. Kales, A.Stefanis, C. N. & Talbott, J. A.. Springer-Verlag. [MP]Google Scholar
Casamenti, F., Cosi, C. & Pepeu, G. (1987) Effect of Dl and D2 dopaminergic agonists and antagonists on cortical acetylcholine release in vivo. In: Cellular and molecular basis of cholinergic functions, ed. Dowdall, M. J. & Hawthorne, J. N.. VCH Publishers. [MS]Google Scholar
Cassaday, H. J., Hodges, H. & Gray, J. A. (in press) The effects of pharmacological and neurotoxic manipulation of serotonergic activity on latent inhibition in the rat: Implications for the neural basis of acute schizophrenia. Proceedings of Conference on Serotonin-System–Related Syndromes: Psychopathological and Therapeutic Links, Venice, March, 1990. Royal Society of Medicine, London. [arJAG]Google Scholar
Castle, D. & Murray, R. M. (1991) The neurodevelopmental basis of sex differences in schizophrenia. Psychological Medicine, in press [LP]CrossRefGoogle Scholar
Caza, P. A. (1984) Noradrenergic influences on blocking: Interactions with development. Pharmacology Biochemistry and Behavior 21:917. [RDO]CrossRefGoogle ScholarPubMed
Ceci, A., Smith, M. & French, E. D. (1988) Activation of the A 10 mesolimbic system by the sigma–receptor agonist (+)SKF10,047 can be blocked by rimcazole, a novel putative anti-psychotic. European Journal of Pharmacology 154:5357. [KLRJ]CrossRefGoogle Scholar
Chandler, M. (1989) Doubt and developing theories of mind. In: Developing theories of mind, ed. Astington, J. W., Harris, P. & Olson, D. R.. Cambridge University Press. [LP]Google ScholarPubMed
Chapman, L. J. & Chapman, J. P. (1978) The measurement of differential deficits. Journal of Psychiatric Research 14:303–11. [rJAG]CrossRefGoogle Scholar
Chapman, L. J., Chapman, J. P. & Miller, G. A. (1964) A theory of verbal behavior in schizophrenia. In: Progress in experimental personality research, vol. 1, ed. Maher, B. A.. Academic Press. [KS]Google Scholar
Cheramy, A., Romo, R., Godeheu, G., Baruch, P. & Glowinski, J. (1986) In vivo presynaptic control of dopamine release in the cat caudate nucleus, II. Facilitatory or inhibitory influence of L-glutamate. Neuroscience 19:1081–90. [aJAG, KLRJ, IW]Google ScholarPubMed
Chesselet, M.-F. (1984) Presynaptic regulation of neurotransmitter release in the brain; Facts and hypotheses. Neuroscience 12:347–75. [aJAG]CrossRefGoogle Scholar
Chiarenza, G. A., Papakostopoulos, D., Dini, M. & Cazzullo, C. L. (1985) Neurophysiological correlates of psychomotor activity in chronic schizophrenics. Electroencephalography and Clinical Neurophysiology 61:218–28. [GGD]CrossRefGoogle ScholarPubMed
Christison, G. W., Casanova, M. F., Weinberger, D. R., Rawlins, R. & Kleinman, J. E. (1989) A quantitative investigation of hippocampal pyramidal cell size, shape and variability of orientation in schizophrenia. Archives of General Psychiatry 46:1027–34. [aJAG]CrossRefGoogle ScholarPubMed
Claridge, G. (1978) Animal models of schizophrenia: The case for LSD25. Schizophrenia Bulletin 4:186209. [aJAG, GC]CrossRefGoogle ScholarPubMed
Claridge, G. & Broks, P. (1984) Schizotypy and hemisphere function-I. Theoretical considerations and the measurement of schizotypy. Personality and Individual Differences 5:615–32. [rJAG, PHV]Google Scholar
Claridge, G. S., Clark, K. H. & Beech, A. R. (submitted) Lateralisation of the “negative priming” effect: Relationships with schizotypy and with gender. [GC]Google Scholar
Cleghorn, J. M. & Albert, M. L. (1990) Modular disjunction in schizophrenia: A framework for a pathological psychophysiology. In: Recent advances in schizophrenia, ed. Kales, A.Stefanis, C. N. & Talbott, J. A.. Springer-Verlag. [MP]Google Scholar
Cleghorn, J. M., Kaplan, R. D., Szechtman, B., Szechtman, H. & Brown, C. M. (1990) Neuroleptic drug effects on cognitive function in schizophrenia. Schizophrenia Research 3:211–19. [MP]CrossRefGoogle ScholarPubMed
Cleghorn, J. M., Garnett, E. S., Nahmias, C., Firnau, G., Brown, G. M., Kaplan, R., Szechtman, H. & Szechtman, B. (1989) Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Research 28:119–33. [AR]CrossRefGoogle ScholarPubMed
Colle, L. M. & Wise, R. A. (1988) Effects of nucleus accumbens amphetamine on lateral hypothalamic brain stimulation reward. Brain Research 459:361–68. [NAS]CrossRefGoogle ScholarPubMed
Conrad, A. J. & Scheibel, A. B. (1987) Schizophrenia and the hippocampus: The embryological hypothesis extended. Schizophrenia Bulletin 13:577–87. [TP]CrossRefGoogle ScholarPubMed
Contreras, P. C., Quirion, R., Gehlert, D. R., Contreras, M. L. & O'Donohue, T. L. (1987) Autoradiographic distribution of non-dopaminergic binding sites labelled by [ *3H] haloperidol in rat brain. Neuroscience Letters 75:133–40. [KLRJ]CrossRefGoogle ScholarPubMed
Contreras, P. C., Dimaggio, D. A. & O'Donohue, T. L. (1987) An endogenous ligand for the sigma opioid binding site. Synapse 1:5761. [KLRJ]CrossRefGoogle ScholarPubMed
Cools, A. R. (1980) Role of the neostriatal dopaminergic activity in sequencing and selecting behavioural strategies: Facilitation of processes involved in selecting the best strategy in a stressful situation. Behavioral Brain Research 1:361–78. [ARC]CrossRefGoogle Scholar
Cools, A. R. (in press), Role of neostriatal and mesostriatal or mesolimbic dopaminergic fibres in Parkinson's disease with and without dementia: Prospects, concepts and facts, Japanese Journal of Psychopharmacology [ARC]Google Scholar
Cools, A. R., Brachten, R., Heeren, D., Willemen, A. & Ellenbroek, B. (1990) Search after neurobiological profile of individual-specific features of Wistar rats. Brain Research Bulletin 24:4969. [ARC]CrossRefGoogle ScholarPubMed
Cools, A. R., van den Bos, R., Ploeger, G. & Ellenbroek, B. (in press) Gating function of noradrenaline in the ventral striatum: Its role in behavioural responses to environmental and pharmacological challenges. In: The mesolimbic dopamine system: From motivation to action, eds. Willner, P., Scheel–Krüger, J.. John Wiley & Sons Limited. [ARC]Google Scholar
Crider, A., Blockel, L. & Solomon, P. R. (1986) A selective attention deficit in the rat following induced dopamine receptor supersensitivity. Behavioral Neuroscience 100:315–19. [AnC, RDO]CrossRefGoogle ScholarPubMed
Crider, A., Solomon, P. R. & McMahon, M. A. (1982) Disruption of selective attention in the rat following d–amphetamine administration: Relationship to schizophrenic attention disorder. Biological Psychiatry 17:351–61. [aJAG, AnC]Google ScholarPubMed
Cromwell, R. L. (1968) Stimulus redundancy and schizophrenia. Journal of Nervous and Mental Disease 146:360–75. [IJE]CrossRefGoogle ScholarPubMed
Cromwell, R. L. (1984) Preemptive thinking and schizophrenia research. In: Nebraska symposium on motivation, ed. Spaulding, W. D. & Cole, J. K.. University of Nebraska Press. [IJE]Google Scholar
Cromwell, R. L. (1987) An argument concerning schizophrenia: The left hemisphere drains the swamp. In: Individual differences in hemispheric specialization, ed. Glass, A.. Spectrum Press. [IJE]Google Scholar
Cromwell, R. L. & Dokecki, P. R. (1968) Schizophrenic language: A disattention interpretation. In: Developments in applied psycholinguistic research, ed. Rosenberg, S. & Koplin, J. H.. Macmillan. [IJE]Google Scholar
Cromwell, R. L. & Spaulding, W. (1978) How schizophrenics handle information. In: Phenomenology and treatment of schizophrenia, ed. Fann, W. E., Karacan, I., Pokorny, A. D., & Williams, R. L.. Spectrum Press. [KHN]Google Scholar
Crosson, B. (1984) Role of the dominant thalamus in language: A review. Psychological Bulletin 96:491517. [TP]CrossRefGoogle ScholarPubMed
Crosson, B. (1985) Subcortical function in language: A working model. Brain and Language 25:257–92. [NRS]CrossRefGoogle Scholar
Crosson, B. & Hughes, C. W. (1987) Role of the thalamus in language: Is it related to schizophrenic thought disorder? Schizophrenia Bulletin 13:605–21. [TP]CrossRefGoogle ScholarPubMed
Crow, T. J. (1980a) Molecular pathology of schizophrenia: More than one disease process? British Medical Journal 280:6668. [RS]CrossRefGoogle ScholarPubMed
Crosson, B. (1980b) Positive and negative schizophrenic symptoms and the role of dopamine. British Journal of Psychiatry 137:383–86. [aJAG, PHV]Google Scholar
Crosson, B. (1985) The two-syndrome concept: Origin and current status. Schizophrenia Bulletin 11:471–86. [MS, LP]Google Scholar
Crosson, B. (1990) The continuum of psychosis and its genetic origins. British Journal of Psychiatry 156:788–97. [GC]Google Scholar
Crosson, B. (in press) Temporal lobe asymmetries as the key to the aetiology of schizophrenia. Schizophrenia Bulletin. [rJAG, AR]Google Scholar
Crow, T. J., Ball, J., Bloom, S. R., Brown, R., Bruton, C. J., Colter, N., Frith, C. D., Johnstone, E. C., Owens, D. G. C. & Roberts, G. W. (1989) Schizophrenia as an anomaly of the development of cerebral asymmetry. Archives of General Psychiatry 46:1145–50. [AR]CrossRefGoogle ScholarPubMed
Crusio, W. E., Genthner-Grimm, G. & Schwegler, H. (1986) A quantitative-genetic analysis of hippocampal variation in the mouse. Journal of Neurogenetics 3:203–14. [WEC]CrossRefGoogle ScholarPubMed
Crusio, W. E., Schwegler, H. & Lipp, H. P. (1987) Radial maze performance and structural variation of the hippocampus in mice: A correlation with mossy fibre distribution. Brain Research 425:182–85. [rJAG, WEC]CrossRefGoogle ScholarPubMed
Csernansky, J. G., Gsernansky, C. A., Bonnet, K. A. & Hollister, L. E. (1985) Dopaminergic supersensitivity follows ferric chloride–induced limbic seizures. Biological Psychiatry 20:723–33. [RDO]CrossRefGoogle ScholarPubMed
Cummings, J. L. & Benson, D. F. (1987) The role of the nucleus basalis of Meynert in dementia: A review and reconsideration. Alzheimer's Disease and Associated Disorders 3:128–45. [MS]CrossRefGoogle Scholar
Cutting, J. (1985) The psychology of schizophrenia. Churchill Livingstone. [ajAG]Google Scholar
Daun, I., Channon, S., Polkey, C. E. & Gray, J. A. (in press) Classical conditioning after temporal lobe lesions in man: Impairment in conditional discrimination. Behavioral Neuroscience. [rJAG]Google Scholar
Davila, R., Manero, E., Zumarrage, M., Andia, I., Schweitzer, J. W. & Friedhoff, A. J. (1988) Plasma homovanillic acid as a predictor of response to neuroleptics. Archives of General Psychiatry 45:564–67. [GGD]CrossRefGoogle ScholarPubMed
Davis, J. M., Dysken, M. W., Haberman, S. J., Javaid, J. I., Chang, S. S. & Killian, G. A. (1980) Use of survival curves in analysis of antipsychotic relapse studies. Advances in Biochemical Psychopharmacology 24:471–81. [GGD]Google ScholarPubMed
Davison, K. (1983) Schizophrenia–like psychoses associated with organic cerebral disorders: A review. Psychiatric Developments 1:134. [JHW]Google ScholarPubMed
Dawson, M. E. (1990) Psychophysiology at the interface of clinical science, cognitive science, and neuroscience. Psychophysiology 27:243–55. [MED]CrossRefGoogle ScholarPubMed
Dawson, M. E., & Nuechterlein, K. H. (1984) Psychophysiological dysfunctions in the developmental course of schizophrenic disorders. Schizophrenia Bulletin 10:204–32. [GC, MED]CrossRefGoogle ScholarPubMed
De Lisi, L. E., Dauphinais, D. & Gershan, E. S. (1988) Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophrenia Bulletin 14(2):185–91. [rJAG]CrossRefGoogle ScholarPubMed
DeAmicis, L. A. & Cromwell, R. L. (1979) Reaction time crossover in process schizophrenic patients, their relatives, and control subjects. Journal of Nervous and Mental Disease 167:593600. [IJE]CrossRefGoogle ScholarPubMed
Deakin, J. F. W., Slater, P., Simpson, M. D. C., Gilchrist, A. C., Skan, W. J., Royston, M. C., Reynolds, G. P. & Cross, A. J. (1989) Front cortical and left temporal glutamatergic dysfunction in schizophrenia. Journal of Neurochemistry 52:1781–86. [rJAG]CrossRefGoogle Scholar
Dean, P. & Redgrave, P. (1984) Superior colliculus and visual neglect in rat and hamster. III. Functional implications. Brain Research Reviews 8:155–63. [aJAG]CrossRefGoogle Scholar
Depue, R. A. & Woodburn, L. (1975) Disappearance of paranoid symptoms with chronicity. Journal of Abnormal Psychology 84:8486. [aJAG]CrossRefGoogle ScholarPubMed
Dickinson, A. (1980) Contemporary animal learning theory. Cambridge University Press. [aJAG]Google Scholar
Dodd, J. & Kelly, J. S. (1981) The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Research 205:337–50. [aJAG]CrossRefGoogle ScholarPubMed
Domino, E. P. & Luby, E. D. (1981) Abnormal mental states induced by phencyclidine as a model of schizophrenia. In: PCP(Phencyclidine): historical and current perspectives. NPP Books. [KLRJ]Google Scholar
Donchin, E. & Coles, M. G. H. (1988) Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences 11:357–74. [PHV]CrossRefGoogle Scholar
Downes, L. P., Lewis, P. E. & Stone, M. A. (1986) A comparison of the binding of sigma opioids and phencyclidine, and the interaction with antipsychotic drugs in rat brain membranes. British Journal of Pharmacology 88:231–37. [KLRJ]CrossRefGoogle ScholarPubMed
Duchen, M. R., Burton, N. R. & Biscoe, T. J. (1985) An intracellular study of the interactions of N-methyl-DL-aspartate with ketamine in the mouse hippocampal slice. Brain Research 342:149–53. [REH]CrossRefGoogle ScholarPubMed
Duncan, C. C., Morihisa, J. M., Fawcett, R. W. & Kirch, D. G. (1987) P300 in schizophrenia: State or trait marker? Psychopharmacology Bulletin 23:497501. [GGD]Google Scholar
Dunne, M. P. & Hartley, M. R. (1986) Scopolamine and the control of attention in humans. Psychopharmacology 89:9497. [JHW]CrossRefGoogle ScholarPubMed
Dworkin, R. H., Lenzenweger, M. F., Moldin, S. O., Skillings, G. F. & Levick, S. E. (1988) A multidimensional approach to the genetics of schizophrenia. American Journal of Psychiatry 145:1077–83. [WEC]Google Scholar
Early, T. S., Posner, M. I., Reiman, E. M. & Raichle, M. E. (1989a) Hyperactivity of the left striato-pallidal projection. Part I: Lower level theory. Psychiatric Developments 2:85108. [TSE]Google Scholar
Early, T. S., Posner, M. I., Reiman, E. M., & Raichle, M. E. (1989b) Left striato-pallidal hyperactivity in schizophrenia. Part II: Phenomenology and thought disorder. Psychiatric Developments 2:109121. [TSE]Google Scholar
Early, T. S., Reiman, E. M., Raichle, M. E. & Spitznagel, E. L. (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 84. [TP]CrossRefGoogle Scholar
Einhorn, H. J. & Hogarth, R. M. (1980) Judging probable cause. Psychological Bulletin 99:319. [aJAG]CrossRefGoogle Scholar
Elkins, I. J. (1989) Span of apprehension in schizophrenic patients as a function of distractor masking and laterality. Master's thesis, University of Kansas. [IJE]Google Scholar
Ellenbroek, B. & Cools, A. R. (in press) Animal models with construct validity for schizophrenia, Behavioral Pharmacology. [ARC]Google Scholar
Ellinwood, E. H., Stripling, J. S. & Kilbey, M. M. (1977) Chronic changes with amphetamine intoxication: Underlying processes. In: Neuroregulators and psychiatric disorders, ed. Usdin, E.Hamburg, D. A. & Barchas, J.. Oxford University Press. [GGD]Google Scholar
Eriksen, B. A. & Eriksen, C. W. (1974) Effects of noise letters upon identification of a target letter in a nonsearch task. Perception and Psychophysics 6:143–49. [rJAG]CrossRefGoogle Scholar
Etienne, P. & Baudry, M. (1987) Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmissions, brain aging, and schizophrenia: A unifying hypothesis. Neurobiology of Ageing 8:362–66. [KLRJ]CrossRefGoogle ScholarPubMed
Evenden, J. L. & Robbins, T. W. (1983) Increased response switching, perseveration, and perseverative switching following d-amphetamine in the rat. Psychopharmacology 80:6773. [AnC]CrossRefGoogle ScholarPubMed
Everitt, B. J., Cador, M. & Robbins, T. W. (1989) Interactions between the amygdala and ventral striatum in stimulus-reward associations: Studies using a second-order schedule of sexual reinforcement. Neuroscience 30:6375. [ARC]CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1967) The biological basis of personality. Charles C. Thomas. [GC]Google Scholar
Eysenck, H. J. & Eysenck, S. B. G. (1975a) Manual of the Eysenck personality questionnaire. Hodder & Stoughton. [rJAG]Google Scholar
Eysenck, H. J. & Eysenck, S. B. G. (1975b) Psychoticism as a dimension of personality. Hodder & Stoughton. [PHV]Google Scholar
Eysenck, M. W. (1982) Attention and arousal: Cognition and performance. Springer Verlag. [aJAG]CrossRefGoogle Scholar
Falkai, P. & Bogerts, B. (1986) Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Sciences 236:154–61. [aJAG]CrossRefGoogle ScholarPubMed
Falkai, P., Bogerts, B., Roberts, T. W. & Crow, T. J. (1988a) Measurement of the alpha cell migration in the entorhinal region: A marker for developmental disturbances in schizophrenia? Schizophrenia Research 1:157–58. [AR]Google Scholar
Falkai, P., Bogerts, B. & Rozumek, M. (1988b) Limbic pathology in schizophrenia: The entorhinal region – a morphometric study. Biological Psychiatry 24:515–21. [RDO]CrossRefGoogle ScholarPubMed
Farah, M. (1989) The neural basis of mental imagery. Trends in Neurosciences 12:395–99. [DH]CrossRefGoogle ScholarPubMed
Faraone, S. V. & Tsuang, M. T. (1985) Quantitative models of the genetic transmission of schizophrenia. Psychological Bulletin 98:4166. [WEC]CrossRefGoogle ScholarPubMed
Farde, L.Hall, H., Ehrin, E. & Sedvall, G. (1986) Quantitative analysis of dopamine D*2 receptor binding in the living human brain by positron emission tomography. Science 231:258–61. [REH]CrossRefGoogle Scholar
Farde, L., Wiesel, F. A., Hall, H., Halldin, C., Stone-Elder, S. & Sedvall, G. (1987) No D2 receptor increase in PET study of schizophrenia. Archives of Psychiatry 44:671–72. [aJAG]CrossRefGoogle ScholarPubMed
Farde, L., Wiesel, F. A., Stone-Elander, S. S., Halldin, C., Nordstrom, A. L., Hall, H. & Sedvall, G. (1990) D2 dopamine receptors in neurolepticnaive schizophrenic patients. Archives of General Psychiatry 47:213–19. [JRS, TSE, REH, LP]CrossRefGoogle ScholarPubMed
Farley, I., Price, K., McCulloch, E., Deck, J., Hordynski, W. & Hornykiewicz, O. (1978) Norepinephrine in chronic paranoid schizophrenia: Above-normal in limbic forebrain. Science 200:456–58. [ARC]CrossRefGoogle ScholarPubMed
Feldon, J. & Gray, J. A. (1979) Effects of medial and lateral septal lesions on the partial reinforcement extinction effect at short inter-trial intervals. Quarterly Journal of Experimental Psychology 31:675–90. [aJAG]CrossRefGoogle ScholarPubMed
Feldon, J. & Weiner, I. (1988) Long-term attentional deficit in nonhandled males: Possible involvement of the dopaminergic system. Psychopharmacology 95:231–36. [aJAG]CrossRefGoogle ScholarPubMed
Feldon, J. & Weiner, I. (in press a) An animal model of attention deficit. In: Neuromethods, vol. 20: Animal models in psychiatry, ed. Boulton, A. A., Baker, G. B. & Martin-Iversen, M. T.Humana Press. [rJAG]Google Scholar
Feldon, J. & Weiner, I. (in press b) Amphetamine and the multi-trial partial reinforcement extinction effect (PREE) in an operant chamber: Procedural modifications which lead to the attenuation of the PREE. Pharmacology, Biochemistry and Behavior. [rJAG]Google Scholar
Feldon, J., Avnimelech-Gigus, N. & Weiner, I. (1990) The effects of pre- and post-weaning rearing conditions on latent inhibition and partial reinforcement extinction effect in male rats. Behavioral and Neural Biology 53:181204. [rJAG]CrossRefGoogle Scholar
Feldon, J., Bercovitz, H. & Weiner, I. (1989) The effects of amphetamine on a multitrial partial reinforcement extinction effect (PREE) in a runway. Pharmacology, Biochemistry, and Behavior 32:6569. [rJAG, IW]CrossRefGoogle Scholar
Feldon, J., Katz, Y. & Weiner, I. (1988) The effects of haloperidol on the partial reinforcement extinction effect (PREE): Implications for neuroleptic drug action on reinforcement and nonreinforcement. Psychopharmacology 95:528–33. [aJAG]CrossRefGoogle ScholarPubMed
Fisher, W., Kerbeshian, J. & Burd, L. (1986) A treatable language disorder: Pharmacological treatment of pervasive developmental disorder. Developmental and Behavioral Pediatrics 7:7376. [NRS]CrossRefGoogle ScholarPubMed
Fisman, M. (1975) The brain stem in psychosis. British Journal of Psychiatry 126:414–22. [RS]CrossRefGoogle ScholarPubMed
Fleischhacker, W. W., Barnas, C., Stuppack, C., Unterweger, B. & Hinterhuber, H. (1987) Zotepine in the treatment of negative symptoms in chronic schizophrenia. Pharmacopsychiatry 20:5860. [MS]CrossRefGoogle ScholarPubMed
Frecska, E., Perenyl, A., Bagdy, G. & Reval, K. (1985) CSF dopamine turnover and positive schizophrenic symptoms after withdrawal of longterm neuroleptic treatment. Psychiatry Research 16:221–26. [RS]CrossRefGoogle ScholarPubMed
Freedman, R. L., Adler, L. E., Gerhardt, G. A., Waldo, M., Baker, N., Rose, G. M., Drebing, C., Nagamoto, H., Bickford-Wimer, P. & Franks, R. (1987) Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin 13:669–78. [AFO]CrossRefGoogle ScholarPubMed
Freeman, A. S. & Bunney, B. S. (1984) The effects of phencyclidine and N– allylnormetazocine on midbrain dopamine neuronal activity. European Journal of Pharmacology 104:287. [KLRJ]CrossRefGoogle Scholar
Freeman, T. &; Gathercole, C. E. (1966) Perseveration – the clinical symptoms – in chronic schizophrenic and organic dementia. British Journal of Psychiatry 112:2732. [AnC]CrossRefGoogle ScholarPubMed
Freund, T. F., Powell, J. F. & Smith, A. D. (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:11891214. [aJAG]CrossRefGoogle ScholarPubMed
Frith, C. D. (1979) Consciousness, information processing, and schizophrenia. British Journal of Psychiatry 134:225–35. [aJAG, REL, KHN]CrossRefGoogle ScholarPubMed
Freund, T. F., Powell, J. F. & Smith, A. D. (1987) The positive and negative sumptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychological Medicine 17:631–48. [arJAG, IJE, NRS]Google Scholar
Frith, C. D. & Done, D. J. (1988) Towards a neuropsychology of schizophrenia. British Journal of Psychiatry 153:437–43. [arJAG, AFO, CF]CrossRefGoogle ScholarPubMed
Frith, C. D. & Done, D. J. (1989) Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychological Medicine 19:359–63. [aJAG]CrossRefGoogle ScholarPubMed
Frith, C. D. & Frith, U. (in press) Elective affinities in schizophrenia and childhood autism. In: Social psychiatry: Theory, methodology, and practice, ed. Bebbington, P.. Transaction. [CF]Google Scholar
Frith, C. D., Stevens, M., Johnstone, E. C. & Crow, T. J. (1988) Acute schizophrenic patients fail to modulate their level of attention. Journal of Psychophysiology 2:195200. [CF]Google Scholar
Gallagher, M., Meagher, M. W. & Bostock, E. (1987) Effects of opiate manipulations on latent inhibition in rabbits: Sensitivity of the medial septal region to intracranial treatments. Behavioral Neuroscience 101:315–24. [RDO]CrossRefGoogle ScholarPubMed
Garrud, P., Rawlins, J. N. P., Mackintosh, N. J., Goodall, G., Cotton, M. M. & Feldon, J. (1984) Successful overshadowing and blocking in hippocampectomized rats. Behavioural Brain Research 12:3953. [RDO]CrossRefGoogle ScholarPubMed
Gay, N., Cottraux, J. A., Denoroy, L., Tommasi, M. & Copp, N. (1989) Possible increase of dopamine beta-hydroxylase activity in the locus ceruleus of paranoid schizophrenic patients: A preliminary post-mortem study. Psychiatry Research 27:3138. [RS]CrossRefGoogle ScholarPubMed
George, L. &: Neufeld, R. W. J. (1985) Cognition and symptomatology in schizophrenia. Schizophrenia Bulletin 11:264–85. [aJAG, KLRJ]CrossRefGoogle ScholarPubMed
Geyer, M. A. & Braff, D. L. (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophrenia Bulletin 13:643–68. [AFO]CrossRefGoogle ScholarPubMed
Geyer, M. A., Russo, P. V., Segal, D. S. & Kuczenski, R. (1987) Effects of apomorphine and amphetamine on patterns of locomotor and investigatory behavior in rats. Pharmacology, Biochemistry, and. Behavior 28:393–99. [IW]CrossRefGoogle ScholarPubMed
Ginton, A., Urea, G. & Lubow, R. E. (1975) The effects of preexposure to a non-attended stimulus on subsequent learning: Latent inhibition in adults. Bulletin of the Psychonomic Society 5:58. [REL]CrossRefGoogle Scholar
Glowinski, J., Besson, M. J. & Cheramy, A. (1984) Role of the thalamus in the bilateral regulation of dopaminergic and GABAergic neurons in the basal ganglia. In: Functions of the basal ganglia. Ciba Foundation Symposium 107, ed. Evered, D. & O'Connor, M.. Ciba Foundation. [aJAG]Google ScholarPubMed
Gluck, M. A. &: Thompson, R. F. (1987) Modeling the neural substrate of associative learning and memory: A computational approach. Psychological Review 94:176–91. [JG]CrossRefGoogle ScholarPubMed
Gold, J. M. & Hurt, S. W. (1990) The effects of haloperidol on thought disorder and IQ in schizophrenia. Journal of Personality Assessment 54:390400. [JRS]CrossRefGoogle ScholarPubMed
Goldberg, E. & Bilder, R. (1987) Frontal lobes and hierarchic organization of neurocognitive control. In: Frontal lobes revisited, ed. Perecman, E.. IRBN Press. [EG]Google Scholar
Goldberg, E. & Costa, L. D. (1981) Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language 14:144–73. [EG]CrossRefGoogle ScholarPubMed
Goldberg, E. (1985) Akinesia, tardive dysmentia, and frontal lobe disorder in schizophrenia. Schizophrenia Bulletin 11:255–63. [rJAG, EG]CrossRefGoogle ScholarPubMed
Goldberg, E. (1989) The gradiental approach to neocortical functionai organization. Journal of Clinical and Experimental Neuropsychology 11:489517. [EG]CrossRefGoogle Scholar
Goldberg, E. (1990) Associative agnosias and the functions of the left hemisphere. Journal of Clinical and Experimental Neuropsychology 12:467–84. [EG]CrossRefGoogle ScholarPubMed
Goldberg, G. (1985) Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences 8:189230. [REH]CrossRefGoogle Scholar
Goldberg, T. E., Weinberger, D. R., Pishkin, N. H., Berman, K. F. & Podd, M. H. (1990) Recall memory deficit in schizophrenia: A possible manifestation of prefrontal dysfunction. Schizophrenia Research 2:251–57. [MP]CrossRefGoogle Scholar
Gottesman, I. I. & Shields, J. (1982) Schizophrenia: The epigenetic puzzle. Cambridge University Press. [IJE, WEC]Google Scholar
Grace, A. A. & Bunney, B. S. (1986) Induction of depolarization block in. midbrain dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording. Journal of Pharmacology and Experimental Therapeutics 238:10921100. [GGD]Google ScholarPubMed
Gray, J. A. (1975) Elements of a two-process theory of learning. Academic Press. [aJAG]Google Scholar
Gray, J. A. (1982a) The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. Oxford University Press. [arJAG, IW, NAS, NRS, JHW, GC]Google Scholar
Gray, J. A. (1982b) Précis of “The Neuropsychology of Anxiety: An enquiry into the functions of the septo-hippocampal system.” Behavioral and Brain Sciences 5:469–84. [aJAG, NRS]CrossRefGoogle Scholar
Gray, J. A. (1987) The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford University Press, paperback edition. [aJAG]Google Scholar
Gray, J. A. & Baruch, I. (1987) Don't leave the “psych” out of neuropsychology. Peer commentary on N. R. Swerdlow & G. F. Koob: “Dopamine, Schizophrenia, Mania and Depression: Toward a Unified Hypothesis of Cortico-striato-pallido-thalamic Function.” Behavioral and Brain Sciences 10:215–17. [arJAG, NRS]CrossRefGoogle Scholar
Graybiel, A. M.Besson, M. J. & Weber, E. (1989) Neuroleptic-sensitive binding sites in the nigrostriatal system: Evidence for differential distribution of sigma sites in the substantia nigra pars compacta of the cat. Journal of Neuroscience 9:326–38. [KLRJ]CrossRefGoogle ScholarPubMed
Grillon, C., Courchesne, E., Ameli, R., Geyer, M. A. & Braff, D. L. (1990) Increased distractibility in schizophrenic patients: electrophysiologic and behavioral evidence. Archives of General Psychiatry 47:171–79. [RDO]CrossRefGoogle ScholarPubMed
Grinspoon, L. & Bakalar, S. B. (1981) Psychedelic drugs reconsidered. Basic Books. [KLRJ]Google Scholar
Groves, P. M. (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Research Reviews 5:109–32. [aJAG]CrossRefGoogle Scholar
Gruzelier, J. H. (1984) Hemispheric imbalances in schizophrenia. International Journal of Psychophysiology 1:227–40. [IJE]CrossRefGoogle ScholarPubMed
Gruzelier, J. H. & Venables, P. H. (1972) Skin conductance orienting activity in a heterogeneous sample of schizophrenics. Journal of Nervous and Mental Disease 155:277–87. [GC]CrossRefGoogle Scholar
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A. & Hirsch, S. (1988) Impairments on neuropsychologic tests of hippocampal functions and word fluency in remitting schizophrenia and affective disorder. Archives of General Psychiatry 45:623–29. [aJAG]CrossRefGoogle Scholar
Gundlach, A. L., Largent, B. L. & Snyder, S. H. (1986) Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)*3H–3–(3–hydroxyphenyl)–N–(l–propyl)–piperidine. Journal of Neuroscience 6:1757–70. [KLRJ]CrossRefGoogle Scholar
Hackley, S. A., Woldorff, M. & Hillyard, S. A. (1987) Combined use of microreflexes and event–related brain potentials as measures of auditory selective attention. Psychophysiology 24:632–47. [RDO]CrossRefGoogle ScholarPubMed
Gundlach, A. L., Largent, B. L. & Snyder, S. H. (1986) Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)*3H–3–(3–hydroxyphenyl)–N–(l-propyl)–piperidine. Journal of Neuroscience 6:1757–70. [KLRJ]CrossRefGoogle Scholar
Hackley, S. A., Woldorff, M. & Hillyard, S. A. (1987) Combined use of microreflexes and event-related brain potentials as measures of auditory selective attention. Psychophysiology 24:632–47. [RDO]CrossRefGoogle ScholarPubMed
Haigler, H. J. & Aghajanian, G. K. (1974) Peripheral serotonin antagonists: Failure to antagonise serotonin in brain areas receiving a prominent serotonergic input. Journal of Neural Transmission 35:257–73. [aJAG]CrossRefGoogle Scholar
Halgren, E., Squires, N. K., Wilson, C. L., Rohrbaugh, J. W., Babb, T. L. & Crandall, P. H. (1980) Endogenous potentials generated in the human hippocampal formation by infrequent events. Science 210:803–5. [rJAG, PHV]CrossRefGoogle ScholarPubMed
Hall, G. & Channell, S. (1985a) Differential effects of contextual change on latent inhibition and on the habituation of an orienting response. Journal of Experimental Psychology: Animal Behavior Processes 11:470–81. [rJAG, JG]Google Scholar
Hall, G. & Channell, S. (1985b) Latent inhibition and conditioning after preexposure to the training context. Learning, and Motivation 16:381–97. [REL]CrossRefGoogle Scholar
Hall, G. & Channell, S. (1986) Context specificity of latent inhibition in taste aversion learning. Quarterly Journal of Experimental Psychology 38B:121–39. [REL]Google Scholar
Hall, G. & Honey, R. C. (1987) Contextual effects in conditioning, latent inhibition and habituation: Associative and retrieval functions of contextual cues. Journal of Experimental Psychology: Animal Behaviour Processes 15:232–41. [CF]Google Scholar
Hall, G. & Minor, H. (1984) A search for context-stimulus associations in latent inhibition. Quarterly Journal of Experimental Psychology 36B:145–69. [REL]CrossRefGoogle Scholar
Harrow, M. & Quinlan, D. (1985) Disordered thinking and schizophrenic psychopathology. Gardner Press. [MH]Google Scholar
Harrow, M., Lanin-Kettering, I. & Miller, J. G. (1989) Impaired perspective and thought pathology in schizophrenic and psychotic disorders. Schizophrenia Bulletin 15:605–23. [MH]CrossRefGoogle ScholarPubMed
Harrow, M., Rattenbury, F. & Stoll, F. (1988) Schizophrenic delusions. In: Delusional beliefs: Interdisciplinary perspectives, ed. Öltmanns, T. F. & Maher, B. A.. John Wiley & Sons. [MH]Google Scholar
Hawkings, R. D. & Kandel, E. R. (1984) Is there a cell-biological alphabet for simple forms of learning? Psychological Review 91:375–91. [JG]CrossRefGoogle Scholar
Hawton, K., Shepstone, B., Soper, N. & Reznek, L. (1990) Single-photon emission computerised tomography (SPECT) in schizophrenia. British Journal of Psychiatry 156:425–27. [RDO]CrossRefGoogle ScholarPubMed
Hazlett, E. A., Dawson, M. E., Buchsbaum, M. S. & Nuechterlein, K. H. (submitted) Reduced frontal and hippocampal glucose metabolism in electrodermal nonresponder schizophrenics assessed by PET: A pilot study. [MED]Google Scholar
Heath, R. G. (1954) Studies in schizophrenia. Harvard University Press. [JRS]CrossRefGoogle Scholar
Heath, R. G. & Walker, C. F. (1985) Correlation of deep and surface electroencephalograms with psychosis in schizophrenics: A report of two cases. Biological Psychiatry 20:669–74. [rJAG, JHW]CrossRefGoogle ScholarPubMed
Heath, R. G., McCarron, K. L. & O'Neil, C. E. (1989) Antiseptal brain antibody in IgG of schizophrenic patients. Biological Psychiatry 25:725–33. [WEC]CrossRefGoogle ScholarPubMed
Hemsley, D. R. (1977) What have cognitive deficits to do with schizophrenic symptoms? British Journal of Psychiatry 130:167–73. [aJAG]CrossRefGoogle Scholar
Hemsley, D. R. (1982) Cognitive impairment in schizophrenia. In: The pathology and psychology of cognition, ed. Burton, A.. Methuen. [aJAG]Google Scholar
Hemsley, D. R. (1987a) An experimental psychological model for schizophrenia. In: Search for the causes of schizophrenia, ed. Hamer, H., Gattaz, W. F. & Janzavik, W.. Springer Verlag. [arJAG, MP, IJE, KLRJ, JG]Google Scholar
Hemsley, D. R. (1987b) Hallucinations: Unintended or unexpected? Behavioral and Brain Sciences 10:532–33. [REH]CrossRefGoogle Scholar
Hestenes, D. (1990) A neural network theory of manic-depressive illness. In: Motivation, emotion and goal direction in neural networks, eds. Levine, D. S. and Leven, S. J.. Lawrence Erlbaum. [DH]Google Scholar
Hillyard, S. A., Picton, T. W. & Regan, D. (1978) Sensation, perception and attention: Analysis using ERPs. In: Event-related brain potentials in man, ed. Callaway, E., Tueting, P. & Koslow, S. H.. Academic Press. [RDO]Google Scholar
Hoffman, R. E. (1986) Verbal hallucinations and language production processes in schizophrenia. Behavioral and Brain Sciences 9:503–48. [aJAG, REH, AFO]CrossRefGoogle Scholar
Hoffman, R. E. (1987) Cognitive models of verbal hallucinations in schizophrenia. Behavioral and Brain Sciences 10:534–37. [REH]CrossRefGoogle Scholar
Hoffman, R. E. & Dobscha, S. B. (1989) Cortical pruning and the development of schizophrenia: A computer model. Schizophrenia Bulletin 15:477–90. [REH]CrossRefGoogle ScholarPubMed
Hoffman, W. F., Labs, S. M. & Casey, D. E. (1987) Neuroleptic induced Parkinsonism in older schizophrenics. Biological Psychiatry 22:427–39. [RS]CrossRefGoogle ScholarPubMed
Hogarty, G. E. & Ulrich, R. F. (1977) Temporal effects of drug and placebo in delaying relapse in schizophrenic outpatients. Archives of General Psychiatry 34:297313. [GGD]CrossRefGoogle ScholarPubMed
Holzman, P. S. (1987) Recent studies of psychophysiology in schizophrenia. Schizophrenia Bulletin 13:4975. [aJAG, MED, KHN]CrossRefGoogle ScholarPubMed
Hopf, A. (1952) Uber histopathologische Veranderungen in Pallidum und Striatum bei Schizophrenic. Proceedings of the International Congress of Neuropathology, vol. 3, Turin, Italy. Rosenberg & Sellinger. [RS]Google Scholar
Horvath, T. B., Siever, L. J., Mohs, R. C. & Davis, K. (1989) Organic mental syndromes and disorders. In: Comprehensive textbook of psychiatry, eds. Kaplan, H. I. and Sadcock, B. J., Williams & Wilkins. [JHW]Google Scholar
Houston, J. P., Maas, J. W., Bowden, C. L., Contreras, S. A., Melntyre, K. L. & Javors, M. A. (1986) Cerebrospinal fluid HVA, central brain atrophy, and clinical state in schizophrenia. Psychiatry Research 19:207–14. [RS]CrossRefGoogle Scholar
Iacono, W. G. (1988) Eye movement abnormalities in schizophrenic and affective disorders. In: Neuropsychology of eye movements, ed. Johnston, C. W. & Pirozzolo, F. J.. Lawrence Erlbaum. [aJAG]Google Scholar
Imperato, A., Alivernini, L., Scrocco, M. G., Bacchi, S., & Angelucci, L. (1990) Excitatory aminoacids on dopaminergic and cholinergic transmission: Potential therapeutic applications. Neurochemistry International 16, Supplement 1:44. [AC]Google Scholar
Imperato, A., Mulas, A. & Di Chiara, G. (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. European Journal of Pharmacology 132:337–38. [rJAG]CrossRefGoogle ScholarPubMed
Ingham, C. A., Bolam, J. P. & Smith, A. D. (1988) GABA-immunoreactive synaptic boutons in the rat basal forebrain: Comparisons of neurons that project to the neocortex with pal lidos ubthalamic neurons. Journal of Comparative Neurology 273:263–82. [MS]CrossRefGoogle Scholar
Ingraham, L. J. & Kety, S. S. (1988) Schizophrenia spectrum disorders. In: Handbook of schizophrenia: Nosology, epidemiology and genetics, vol. 3, eds. Tsuang, M. T. & Simpson, J. C.. Elsevier Science Publishers. [LJI]Google Scholar
Isaacson, R. L. (1980) A perspective for the interpretation of limbic system function. Physiological Psychology 8:183–88. [aJAG]CrossRefGoogle Scholar
Isaacson, R. L. (1984) Hippocampal damage: Effects on dopaminergic systems of the basal ganglia. International Beview of Neurobiology. [TSE]CrossRefGoogle Scholar
Itzhak, Y. & Alerhand, S. (1989) Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice. The Federation of American Societies of Experimental Biology Journal 3:1868–72. [KLRJ]CrossRefGoogle ScholarPubMed
Iversen, S. D. (1977) Striatal function and stereotyped behaviour. In: Psychobiology of the striatum, ed. Cools, A. R., Lohman, A. H. M. & van der Berken, J. H. L.. North-Holland Publishing Co. [aJAG]Google Scholar
Jackson, H. F. (1990) Are there biological markers of schizophrenia? In: Reconstructing schizophrenia, ed. Bentall, R. P.. Routledge. [GC]Google Scholar
Jaffe, J. H. (1989) Psychoactive substance abuse disorders. Ch. 13 in Comprehensive Textbook of Psychiatry 5th Edition, eds. Kaplan, H. I. and Sadcock, B. J., Williams and Wilkins. [JHW]Google Scholar
Jakob, H. & Beckmann, H. (1986) Prenatal development disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission 65:303–26. [LP, TP, AR]CrossRefGoogle ScholarPubMed
Jansen, K. L. R. (1989) Near death experience and the NMDA receptor. British Medical Journal 298:1708. [KLRJ]CrossRefGoogle ScholarPubMed
Jansen, K. L. R. (1990) Neuroscience and the near-death experience: Roles for the NMDA– PCP receptor, the sigma receptor, and the endopsychosins. Medical Hypotheses 31:2529. [KLRJ]CrossRefGoogle ScholarPubMed
Jansen, K. L. R., Dragunow, M. & Faull, R. L. M. (1989a) [*3H] glycine binding sites, NMDA and PCP receptors similar distributions in the human hippocampus: An autoradiographic study. Brain Research 482:174–78. [rJAG, KLRJ]CrossRefGoogle ScholarPubMed
Jansen, K. L. R., Dragunow, M. & Faull, R. L. M. (1989b) Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [*3H] TCP, [*3H] glycine, L–[*3H] glutamate, [*3H] AMPA and [*3H] kainic acid binding sites. Neuroscience 32:587607. [rJAG, KLRJ]CrossRefGoogle Scholar
Jansen, K. L. R., Dragunow, M. & Faull, R. L. M. (1990) Sigma receptors are highly concentrated in the rat pineal gland. Brain Research 507:158–60. [KLRJ]CrossRefGoogle ScholarPubMed
Jarrard, L. E., Feldon, J., Rawlins, J. N. P., Sinden, J. D. & Gray, J. A. (1986) The effects of intrahippocampal ibotenate on resistance to extinction after continuous or partial reinforcement. Experimental Brain Research 61:519–30. [aJAG]CrossRefGoogle ScholarPubMed
Jeste, D. V. & Lohr, J. B. (1989) Hippocampal pathologic findings in schizophrenia. Archives of General Psychiatry 46:1019–24. [aJAG]CrossRefGoogle ScholarPubMed
Johnson, F. H. (1978) The anatomy of hallucinations. Nelson-Hall. [AFO]Google Scholar
Jones, E. G. (1985) The thalamus. Plenum Press. [AFO]CrossRefGoogle Scholar
Jones, S. H. (1989) The Kamin blocking effect, incidental learning and choice reaction time in acute and chronic schizophrenia. Ph.D. thesis, University of London. [arJAG]Google Scholar
Jones, S. H., Hemsley, D. R. & Gray, J. A. (1990) The Kamin blocking effect, incidental learning and psychoticism. British Journal of Psychology 81:95109. [arJAG, PHV]CrossRefGoogle ScholarPubMed
Joseph, M. H., Young, A. M. J. & Gray, J. A. (in press) Insights into behavioural functions of dopamine systems using in vivo voltammetry and dialysis. Journal of Psychopharmacology. [rJAG]Google Scholar
Joseph, M. H., Frith, C. D. & Waddington, J. L. (1979) Dopaminergic mechanisms and cognitive deficit in schizophrenia: A neurobiological model. Psychopharmacology 63:273–80. [aJAG]CrossRefGoogle ScholarPubMed
Kaku, T., Momotani, Y. & Higashi, Y. (1986) Study of movement-related cortical potential in chronic schizophrenics. Japanese Journal of Psychiatry and Neurology 40:533. [GGD]Google Scholar
Kamer, R. S., Turi, A. R., Solomon, P. R. & Kaplan, L. J. (1981) Increased mesolimbic dopamine binding following chronic haloperidol treatment. Psychopharmacologia 72:261–63. [RDO]CrossRefGoogle ScholarPubMed
Kamin, L. J. (1968) “Attention-like” processes in classical conditioning. In: Miami symposium on the prediction of behavior, ed. Jones, M. R.. University of Miami Press. [aJAG]Google Scholar
Kar, B. C. (1967) Muller-Lyer illusion in schizophrenics as a function of field distraction and exposure time. Master's thesis, George Peabody College for Teachers, Nashville, TN. [IJE]Google Scholar
Karlsson, J. L. (1978) Inheritance of creative intelligence. Nelson-Hall. [GC]Google Scholar
Kay, S. R. & Sevy, S. (in press) Pyramidal model of schizophrenia. Schizophrenia Bulletin. [RS]Google Scholar
Kay, S. R. & Singh, M. M. (1989) The positive-negative distinction in drug-free schizophrenic patients: Stability, response to neuroleptics, and prognostic significance. Archives of General Psychiatry 46:711–18. [RS]CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A. & Opler, L. A. (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13:261–75. [RS]CrossRefGoogle ScholarPubMed
Kaye, H. & Pearce, J. M. (1987) Hippocampal lesions attenuate latent inhibition and the decline of the orienting response in rats. Quarterly Journal of Experimental Psychology 39B:107–25. [aJAG, PHV]Google Scholar
Kelley, A. E. & Domesick, V. B. (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat. An anterograde– and retrograde-horseradish peroxidase study. Neuroscience 7:2321–35. [aJAG]CrossRefGoogle Scholar
Kelly, P. K., Seviour, P. W. & Iversen, S. D. (1975) Amphetamine and apomorphine responses in the rat following 6–OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Research 94:507–22. [aJAG]CrossRefGoogle ScholarPubMed
Kemp, J. M. & Powell, T. P. S. (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: A study with the Golgi method. Philosophical transactions of the Royal Society (London), Section B 262:429–39. [rJAG]Google ScholarPubMed
Kendler, K. S. (1985) Diagnostic approaches to schizotypal personality disorder: A historical perspective. Schizophrenia Bulletin 11:538–53. [LJI]CrossRefGoogle ScholarPubMed
Kennedy, J. L., Giuffra, L. A., Moises, H. W., Cavalli-Sforza, L. L., Pakstis, A. J., Kidd, J. R., Castiglione, C. M., Sjogren, B., Wetterberg, L. & Kidd, K. K. (1988) Evidence against linkage of schizophrenia to markers on chromosome 5 in northern Swedish pedigree. Nature 336:167–70. [WEC]CrossRefGoogle ScholarPubMed
Kerwin, R. W., Patel, S., Meldrum, B. S., Czudeck, C. & Reynolds, G. P. (1988) Asymmetrical loss of a glutamate receptor subtype in left hippocampus in postmortem schizophrenic brain. Lancet (i):583–84. [aJAG]CrossRefGoogle Scholar
Ketchum, J. S., Sidell, F. R., Crowell, E. B. Jr, Aghajanian, G. K. & Hayes, A. H. (1973) Atropine, scopolamine and ditran: Comparative pharmacology and antagonists in man. Psychopharmacologia 28:121–45. [JHW]CrossRefGoogle ScholarPubMed
Kety, S. S., Rosenthal, D., Wender, P. H., Schulsinger, F. (1968) The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. Journal of Psychiatric Research 6, Supplement 1:345–62. [LJI]CrossRefGoogle Scholar
Kim, J. S., Kornhuber, H. H., Kornhuber, J. & Kornhuber, M. E. (1986) Glutamic acid and the dopamine hypothesis of schizophrenia. In: Biological psychiatry (1985) ed. Chagass, L.–H., Josiassen, R. C., Bridger, W. H., Weiss, H. J., Stuff, D. & Simpson, G. S.. Elsevier. [KLRJ]Google Scholar
Klawans, H. L. (1988) Psychiatric side effects during the treatment of Parkinson's disease. Journal of Neural Transmission 27, Supplement: 117–22. [RS]Google ScholarPubMed
Kleinman, J. (1987) Postmortem studies in schizophrenia, International Journal of Neuroscience 32:640–41. [ARG]Google Scholar
Knight, R. A. (1984) Converging models of cognitive deficit in schizophrenia. In: Theories of schizophrenia and psychosis, ed. Spaulding, W. & Cole, J. K.. University of Nebraska Press. [aJAG, IJE]Google Scholar
Knight, R. A., Elliott, D. S., Roff, J. D. & Watson, C. G. (1986) Concurrent and predictive validity of components of disordered thinking in schizophrenia. Schizophrenia Bulletin 12:427–46. [aJAG]CrossRefGoogle ScholarPubMed
Koh, S. D. (1978) Remembering of verbal materials in schizophrenic young adults. In: Language and cognition in schizophrenia, ed. Schwartz, S.. Erlbaum. [JRS]Google Scholar
Kohler, C. & Chan-Palay, V. (1988) Cholecystokinin-octapeptide (CCK–8) receptors in the hippocampal region: A comparative in vitro autoradiographic study in the rat, monkey, and the postmortem human brain. Neuroscience Letters 90:5156. [rJAG, LP]CrossRefGoogle ScholarPubMed
Kokkinidis, L. & Anisman, H. (1981) Amphetamine psychosis and schizophrenia: A dual model. Neuroscience & Biobehavioral Reviews 5:449–61. [LJI]CrossRefGoogle ScholarPubMed
Kolb, B., & Whishaw, I. Q. (1983) Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. Journal of Nervous and Mental Disease 171:435–43. [MED]CrossRefGoogle ScholarPubMed
Kopstein, J. H. & Neale, J. M. (1972) A multivariate study of attention dysfunction in schizophrenia. Journal of Abnormal Psychology 80:294–98. [JRS]CrossRefGoogle Scholar
Kornhuber, J. & Kornhuber, M. E. (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sciences 39:669–74. [KLRJ]CrossRefGoogle ScholarPubMed
Kornhuber, J., Mack-Burkhardt, F., Riederer, P., Hebenstriet, G. F., Reynolds, G. P., Andrews, H. B. & Beckmann, H. (1989) [*3H] MK–801 binding sites in postmortem brain regions of schizophrenic patients. Journal of Neural Transmission 77:231–36. [KLRJ]CrossRefGoogle ScholarPubMed
Kornhuber, J., Riederer, P., Reynolds, G. P., Beckmann, H., Jellinger, K., & Gabriel, E. (1989) 3H-spiperone binding sites in post-mortem brains from schizophrenic patients: Relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. Journal of Neural Transmission 75:110. [JRS]CrossRefGoogle ScholarPubMed
Kovelman, J. A. & Scheibel, A. B. (1984) A neuro-histological correlate of schizophrenia. Biological Psychiatry 19:1601–21. [AR]Google Scholar
Kraepelin, E. (1919) Dementia praecox. (Trans. Barclay, E. & Barclay, W..) Livingston. [aJAG]Google Scholar
Kraepelin, E. (1971) Dementia praecox and paraphrenia. Krieger. [AnC]Google Scholar
Kuczenski, R. (1983) Biochemical actions of amphetamine and other stimulants. In: Stimulants: Neurochemical, behavioral, and clinical perspectives, ed. Creese, I.. Raven Press. [IW]Google Scholar
Largent, B. L., Wikstrom, H., Snowman, A. M. & Snyder, S. H. (1988) Novel antipsychotic drugs share high affinity for sigma receptors. European Journal of Pharmacology 155:345–47. [KLRJ]CrossRefGoogle ScholarPubMed
Launay, G. & Slade, P. D. (1981) The measurement of hallucinatory predisposition in male and female prisoners. Personality and Individual Differences 2:221–34. [rJAG, PHV]CrossRefGoogle Scholar
Leff, J. (1987) A model of schizophrenic vulnerability to environmental factors. In: Search for the causes of schizophrenia, ed. Hafher, H., Gattaz, W. F. & Janzarik, W.. Springer Verlag. [rJAG]Google Scholar
Leichnetz, G. R. (1981) The prefrontal cortico-oculomotor trajectories in the monkey. A possible explanation for the effects of stimulation/lesion experiments on eye movement. Journal of the Neurological Sciences 49:387–96. [aJAG]CrossRefGoogle Scholar
Leichnetz, G. R., Spencer, R. F., Hardy, S. G. P. & Astruc, J. (1981) The prefrontal corticotectal projection in the monkey: An anterograde and retrograde horseradish peroxidase study. Neuroscience 6:1023–41. [aJAG]CrossRefGoogle ScholarPubMed
Lesch, A. & Bogerts, B. (1984) The diencephalon in schizophrenia: Evidence for reduced thickness of the periventricular grey matter. European Archives of Psychiatry and Neurological Sciences 234:212–19. [RS, AR]CrossRefGoogle ScholarPubMed
Levin, S. (1983) Smooth pursuit impairment in schizophrenia – What does it mean? Schizophrenia Bulletin 9:3744. [aJAG]CrossRefGoogle ScholarPubMed
Levin, S. (1984) Frontal lobe dysfunctions in schizophrenia I. Eye movement impairments. Journal of Psychiatric Research 18:2755. [aJAG, HES]CrossRefGoogle ScholarPubMed
Levin, S., Levin, S.Lipton, R. B. & Holzman, P. S. (1981) Pursuit eye movements in psychopathology: Effects of target characteristics. Biological Psychiatry 16:255–67. [aJAG]Google ScholarPubMed
Levin, S., Yurgelun-Todd, D. & Craft, S. (1989) Contributions of clinical neuropsychology to the study of schizophrenia. Journal of Abnormal Psychology 98:341–56. [JRS]CrossRefGoogle Scholar
Levit, R. A., Sutton, S. & Zubin, J. (1973) Evoked potential correlates of information processing in psychiatric patients. Psychological Medicine 3:487–94. [GGD]CrossRefGoogle ScholarPubMed
Lewis, S. W. & Mezey, G. C. (1985) Clinical correlates of septum pellucidum cavities: An unusual association with psychosis. Psychological Medicine 15:4345. [rJAG, JHW]CrossRefGoogle ScholarPubMed
Lewis, S. W., Murray, R. M. & Owen, M. J. (1989) Obstetric complications in schizophrenia. Methodology and mechanisms. In: Schizophrenic-Scientific progress, ed. Schultz, S. C. & Tamminga, C. A.. Oxford University Press. [LP]Google Scholar
Lieberman, J. A., Kinon, B. J. & Loebel, A. D. (1990) Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophrenia Bulletin 16:97110. [AnC]CrossRefGoogle ScholarPubMed
Lindstrom, L., Klockhoff, I., Svedberg, A. & Bergstrom, K. (1987) Abnormal auditory brain-stem responses in hallucinating schizophrenic patients. The British Journal of Psychiatry 151:914. [TP]CrossRefGoogle ScholarPubMed
Lipp, H. P. & Schwegler, H. (1983) Hippocampal mossy fibers and avoidance learning. In: Genetics of the brain, ed. Lieblich, I., Elsevier Biomedical. [WEC]Google Scholar
Ljungberg, T. & Enquist, M. (1987) Disruptive effects of low doses of d-amphetamine on the ability of rats to organise behaviour into functional sequences. Psychopharmacology 93:146–51. [MHJ]CrossRefGoogle ScholarPubMed
Loescher, W. & Czuczwar, S. J. (1986) Studies on the involvement of dopamine D-l and D–2 receptors in the anticonvulsant effect of dopamine agonists in various rodent models of epilepsy. European Journal of Pharmacology 128:5565. [RDO]CrossRefGoogle Scholar
London, E. D., Cascella, N. G., Wong, D. F., Phillips, R. L., Dannals, R. F., Links, J. M., Herning, R., Grayson, R., Jaffe, J. H. & Wagner, H. N. (1990) Cocaine-induced reduction of glucose utilization in human brain: A study using positron emission tomography and [Fluorine 18] – fluorodeoxyglucose. Archives of General Psychiatry 47:567–74. [NRS]CrossRefGoogle Scholar
Silva, Lopes da, Arnolds, F. H., , D. E. A. T. & Neijt, H. C. (1984) A functional link between the limbic cortex and ventral striatum: Physiology of the subiculum accumbens pathway. Experimental Brain Research 55:205–14. [aJAG]Google Scholar
Louilot, A., LeMoal, M. & Simon, H. (1989) Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience 29:4556. [TSE]CrossRefGoogle ScholarPubMed
Louilot, A., Simon, H., Taghzouti, K. & LeMoal, M. (1985) Modulation of dopaminergic activity in the nucleus accumbens following facilitation or blockade of the dopaminergic transmission in the amygdala: A study by in vivo differential pulse voltammetry. Brain Research 346:141–45. [TSE]CrossRefGoogle ScholarPubMed
Louw, D., Sutherland, G. R., Glavin, G. B. & Girvin, J. (1989) A study of monoamine metabolism in human epilepsy. Canadian Journal of Neurological Sciences 16:394–97. [RDO]CrossRefGoogle ScholarPubMed
Lubow, R. E. (1973) Latent inhibition. Psychological Bulletin 79:398407. [aJAG]CrossRefGoogle ScholarPubMed
Lubow, R. E. (1989) Latent inhibition and conditioned attention theory. Cambridge University Press. [arJAG, REL]CrossRefGoogle Scholar
Lubow, R. E., Lubow, R. E.Riflcin, B. & Alek, M. (1976) The context effect: The relationship between stimulus preexposure and environmental preexposure determines subsequent learning. Journal of Experimental Psychology: Animal Behavior Processes 2:3847. [REL]Google Scholar
Lubow, R. E., Werner, I., Schlossberg, A. & Baruch, I. (1987) Latent inhibition and schizophrenia. Bulletin of the Psychonomic Society 25:464–67. [REL]CrossRefGoogle Scholar
Lubow, R. E., Weiner, I. & Feldon, J. (1982) An animal model of attention. In: Behavioural models and the analysis of drug action, ed. Speigelstein, M. Y. & Levy, A.. Elsevier. [aJAG, REL]Google Scholar
Lubow, R. E., Zalstein, N. & Zaks, Y. (submitted) Latent inhibition in Iow– and high–“psychotic-prone” normal subjects. [REL]Google Scholar
Luria, A. R. (1977) On quasiphasie speech disturbances in lesions of the deep structures of the brain. Brain and Language 4:432–59. [AFO]CrossRefGoogle ScholarPubMed
Lynch, J. C. (1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Experimental Brain Research 68:437–41. [aJAG]CrossRefGoogle ScholarPubMed
MacKay, A. V. P. (1980) Positive and negative schizophrenic symptoms and the role of dopamine. Discussion. British Journal of Psychiatry 137:379–83. [RS]CrossRefGoogle Scholar
MacLean, P. D. (1986) Culminating developments in the evolution of the limbic system: The thalamocingulate division. In: The limbic system: Functional organization and clinical disorders, ed. Doane, B. K. & , K. E.Livingston. Raven Press. [rJAG, NRS]Google Scholar
Mackintosh, N. J. (1983) Conditioning and associative learning. Oxford University Press. [aJAG, GC]Google Scholar
Magaro, P. A. (1984) Psychosis and schizophrenia. In: Theories of schizophrenia and psychosis, ed. Spaulding, W. D. & Cole, J. K.. University of Nebraska Press. [aJAG]Google Scholar
Maher, B. A. (1983) A tentative theory of schizophrenic utterance. In: Progress in experimental personality research, vol. 12, ed. Maher, B. A. & Maher, W. B.. Academic Press. [aJAG, TCM]Google Scholar
Manschreck, T. C. (1986) Motor abnormalities in schizophrenia. In: Handbook of schizophrenia: The neurology of schizophrenia, vol. 1, ed. Nasrallah, H. A. & Weinberger, D. R.. Elsevier. [rJAG, AnC]Google Scholar
Manschreck, T. C., Maher, B. A. & Ader, D. N. (1981) Formal thought disorder, the type-token ratio, and disturbed voluntary motor movements in schizophrenia. British Journal of Psychiatry 139:715. [aJAG]CrossRefGoogle ScholarPubMed
Manschreck, T. C., Maher, B. A.Rucklos, M. E. & Vereen, D. R. (1982) Disturbed voluntary motor activity in schizophrenic disorders. Psychological Medicine 12:7384. [TCM, AnC]CrossRefGoogle Scholar
Maragos, W. F., Penney, J. B. & Young, A. B. (1988) Anatomic correlation of NMDA and *3–TCP-labeled receptors in rat brain. Journal of Neuroscience 8:493501. [REH]CrossRefGoogle ScholarPubMed
Marie, P. (1906) Révision de la question de l'aphasie: La troisième circonvolution frontale gauche ne joue aucun rôle spécial dans la function du langage. Semaine Médicale 26:241–47. [NRS]Google Scholar
Marien, M., Brien, J. & Jhamandas, K. (1983) Regional release of (3H)dopamine from rat brain in vitro: Effects of opioids on release induced by potassium, nicotine, and L-glutamic acid. Canadian Journal of Physiology & Pharmacology 61:4360. [aJAG]CrossRefGoogle Scholar
Markianos, M., Rinieris, P., Hatzmanolis, J. & Stefanis, C. (1990) Plasma dopamine-beta-hydroxylase in familial and sporadic paranoid schizophrenia. Biological Psychiatry 27:1176–78. [WEC]CrossRefGoogle ScholarPubMed
Martinot, J. L., Peron-Magnan, P., Huret, J. D., Mazoyer, B., Baron, J. C., Boulenger, J. P., Loc'h, C., Maziere, B., Caillard, V. & Loo, H. (1990) Striatal D*2 dopaminergic receptors assessed with positron emission tomography and [76Br] Bromospiperone in untreated schizophrenic patients. American Journal of Psychiatry 147:4450. [REH]Google Scholar
Matthysse, S. (1980) Nucleus accumbens and schizophrenia. In: The neurobiology of the nucleus accumbens, ed. Chronister, R. B. & DeFrance, j. F.. Haer Institute. [MP]Google Scholar
Matussek, P. (1952) Studies in delusional perception. Psychiatric und Zeitschrift Neurologic 189:279318. (trans. 1987 in: The clinical roots of the schizophrenia concept, ed. Cutting, J. & Shepherd, M.. Cambridge University Press) [arJAG]Google Scholar
McGhie, A. & Chapman, J. (1961) Disorders of attention and perception in early schizophrenia. British Journal of Medical Psychology 34:103–16. [aJAG]CrossRefGoogle ScholarPubMed
McKenna, P. J. (1987) Pathology, phenomenology and the dopamine hypothesis of schizophrenia. British Journal of Psychiatry 151:288301. [aJAG]CrossRefGoogle ScholarPubMed
McLardy, T. (1974) Hippocampal zinc and structural deficit in brains from chronic alcoholics and some schizophrenics. Journal of Orthomolecular Psychiatry 4:3236. [AR]Google Scholar
McLaren, I. P. L., Kaye, H. & Mackintosh, N. J. (1989) An associative theory of the representation of stimuli: Applications to perceptual learning and latent inhibition. In: Parallel distributed processing: Implications for psychology and neurobiology, ed. Morris, R. G. M.. Oxford University Press. [rJAG, JG]Google Scholar
McLean, S. & Weber, E. (1988) Autoradiographic visualisation of haloperidol– sensitive sigma receptors in guinea-pig brain. Neuroscience 25:259–69. [KLRJ]CrossRefGoogle ScholarPubMed
Meaney, M. J., Aitken, D. H., Bodnoff, S. R., Iny, L. F., Tatarewicz, J. E. & Sapolsky, R. M. (1985) Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behavioral Neuroscience 99:765–70. [rJAG]CrossRefGoogle ScholarPubMed
Medalia, A., Gold, J. -M. & Merriam, A. (1988) The effects of neuroleptics on neuropsychological test results of schizophrenics. Archives of Clinical Neuropsychology 3:249–71. [JRS]CrossRefGoogle ScholarPubMed
Mednick, S. A. (1970) Breakdown in individuals at high risk for schizophrenia: Possible predispositional perinatal factors. Mental Hygiene 54:5063. [PHV]Google Scholar
Mednick, S. A. (1974) Breakdown in individuals at high risk for schizophrenia: Possible predispositional perinatal factors. In: Genetics, environment, and psychopathology, ed. Mednick, S. A., Schulsinger, F., Higgins, J. & Bell, B.. North-Holland. [WEC]Google Scholar
Mednick, S. A. & Schulsinger, F. (1968) Some premorbid characteristics related to breakdown in children with schizophrenic mothers. Journal of Psychiatric Research 6:267–91. [rJAG, AR]CrossRefGoogle Scholar
Mednick, S. A. & Silverton, L. (1987) High risk studies of the etiology of schizophrenia. In: Handbook of schizophrenia: Nosology, epidemiology and genetics, vol. 3, ed. Tsuang, M. T. & Simpson, J. C.. Elsevier. [AR]Google Scholar
Miller, G. A., Galanter, E. H. & Pribram, K. H. (1960) Plans and the structure of behavior. Rinehart & Winston. [aJAG]CrossRefGoogle Scholar
Miller, J. (1987) Priming is not necessary for selective attention failures: Semantic effects of unattended, unprimed letters. Perception and Psychophysics 41:419–34. [rJAG]CrossRefGoogle Scholar
Mirkin, A. M. (1985) Bimodal electrodermal activity in schizophrenia. British Journal of Clinical Psychology 24:131–32. [rJAG]CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–17. [EG]CrossRefGoogle Scholar
Mithani, S., Martin-Iverson, M. T., Phillips, A. G., & Fibiger, H. C. (1986) The effects of haloperidol on amphetamine– and methylphenidate–induced conditioned place preferences and locomotor activity. Psychopharmacology 90:247–52. [IW]CrossRefGoogle ScholarPubMed
Mogenson, G. J. & Nielsen, M. (1984) A study of the contribution of hippocampal–accumbens–subpallidal projections to locomotor activity. Behavioral and Neural Biology 42:5260. [NRS]CrossRefGoogle ScholarPubMed
Mogenson, G. J., Swanson, L. W. & Wu, M. (1983) Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic–lateral hypothalamic area: An anatomical and electrophysiological investigation in the rat. Journal of Neuroscience 3:189202. [MS]CrossRefGoogle ScholarPubMed
Mohammed, A. K., Callenholm, N. E. B., Jaerbe, T. U. C., Swedberg, M. D. B., Danysz, W., Robbins, T. W. & Archer, T. (1986) Role of central noradrenaline neurons in the contextual control of latent inhibition in taste aversion learning. Behavioural Brain Research 21:109–18. [RDO]CrossRefGoogle ScholarPubMed
Monaghan, D. T.; Bridges, R. J. & Cotman, C. W. (1989) The excitatory amino acid receptors. Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annual Review of Pharmacology and Toxicology 29:365402. [KLRJ]CrossRefGoogle ScholarPubMed
Moore, J. W. (1979) Information processing in space–time by the hippocampus. Physiological Psychology 7:224–32. [PHV]CrossRefGoogle Scholar
Moore, R. Y., Bjorklund, A.& Stenevi, U. (1971) Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Research 33:1335. [JRS]CrossRefGoogle ScholarPubMed
Mowrer, R. R. (1987) Latent inhibition of contextual stimuli reduces the US preexposure effect. Psychological Record 37:239–46. [REL]CrossRefGoogle Scholar
Murray, R. M., Lewis, S. W., & Reveley, A. M. (1985) Towards an aetiological classification of schizophrenia. The Lancet i:1023–26. [LJI]CrossRefGoogle Scholar
Murray, R. M., Lewis, S. W., Owen, M. J. & Foerster, A. (1988) The neurodevelopmental origins of dementia praecox. In: Schizophrenia: The major issues, ed. Bebbington, P. & McGuffin, P.. Heinmann. [arJAG, LP]Google Scholar
Nauta, W. J. H. & Domesick, V. B. (1984) Afferent and efferent relationships of the basal ganglia. In: Functions of the basal ganglia, ed. Evered, D. & O'Connor, M.. Ciba Foundation Symposium 107. Pitman. [aJAG]Google Scholar
Nicolle, M. M., Barry, C. C., Veronesi, B.& Stanton, M. E. (1989) Fornix transections disrupt the ontogeny of latent inhibition in the rat. Psychobiology 17:349–57. [RDO]CrossRefGoogle Scholar
Nieto, D.& Escobar, A. (1972) Major psychoses. In: Pathology of the nervous system, ed. Minckler, J.. McGraw–Hill. [RS]Google Scholar
Nishikawa, T., Takashima, M. & Toru, M. (1983) Increased [^ F3H] kainic acid binding in the prefrontal cortex in schizophrenia. Neuroscience Letters 40:245–50. [aJAG]CrossRefGoogle ScholarPubMed
Nolan, J. D. (1968) Reversal and extra–dimensional shifts in abstract and concrete schizophrenics. Journal of Abnormal Psychology 73:330–35. [rJAG]CrossRefGoogle Scholar
Nuechterlein, K. H. (in press) Vigilance in schizophrenia and related disorders. In: Handbook of schizophrenia: Neuropsychology, psychophysiology, and information processing, vol. 5, ed. Steinhauer, S., Gruzelier, J. H. & Zubin, J.. Elsevier Science Publishers. [KHN]Google Scholar
Nuechterlein, K. H. & Dawson, M. E. (1984a) A heuristic vulnerability/stress model of schizophrenic episodes. Schizophrenia Bulletin 10:300–12. [KHN]CrossRefGoogle ScholarPubMed
Nuechterlein, K. H. & Dawson, M. E. (1984b) Information processing and attentional functioning in the developmental course of the schizophrenic disorder. Schizophrenia Bulletin 10:160203. [arJAG, JRS, IJE, KHN]CrossRefGoogle Scholar
Oades, R. D. (1985) The role of NA in tuning and DA in switching between signals in the CNS. Neuroscience & Biobehavioral Review 9:261–82. [aJAG, ARC]CrossRefGoogle Scholar
Oades, R. D. & Isaacson, R. L. (1978) The development of food search behavior by rats: The effects of hippocampal damage and haloperidol. Behavioral Biology 24:327–37. [RDO]CrossRefGoogle ScholarPubMed
Oades, R. D., Rea, M.or Taghzouti, K. (1985) The modulation of selective processes in learning by neocortical and limbic dopamine. In: Brain plasticity, learning and memory, ed. Will, B., Schmitt, P. & Dalrymple– Alford, J., Plenum Press. [RDO]Google Scholar
Oades, R. D., Rivet, J–M., Taghzouti, K., Kharuoby, M., Simon, H.& Le Moal, M. (1987) Attentional blocking is delayed by depletion of septal dopamine but remains attenuated after frontal depletion. Brain Research 406:136–46. [RDO]CrossRefGoogle Scholar
Öhman, A. (1981) Electrodermal activity and vulnerability to schizophrenia: A review. Biological Psychology 12:87145. [MED]CrossRefGoogle ScholarPubMed
Öhman, A., Nordby, H., & d'Elia, G. (1986) Orienting and schizophrenia: Stimulus significance, attention, and distraction in a signaled reaction time task. Journal of Abnormal Psychology 95:326–34. [MED]CrossRefGoogle Scholar
Ojemann, G. A. (1975) Language and the thalamus: Object naming and recall during and after thalamic stimulation. Brain and Language 2:101–20. [AFO]CrossRefGoogle ScholarPubMed
Ojemann, G. A. (1976) Subcortical language mechanisms: In: Studies in neurolinguistics, vol. 1, ed. Whitaker, H. & Whitaker, H. A.. Academic Press. [AFO]Google Scholar
Ojemann, G. A. (1983) Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences 6:189230. [AFO]CrossRefGoogle Scholar
Ojemann, G. A. & Ward, A. A. (1971) Speech representation in ventrolateral thalamus. Brain 94:669–80. [AFO]CrossRefGoogle ScholarPubMed
Oke, A. F. & Adams, R. N. (1987) Elevated thalamic dopamine: Possible link to sensory dysfunctions in schizophrenia. Schizophrenia Bulletin 13:589605. [AFO, TP]CrossRefGoogle ScholarPubMed
Oke, A. F., Adams, R. N., Winblad, B. & von Knorring, L. (1988) Elevated dopamine/norepinephrine ratios in thalami of schizophrenic brains. Biological Psychiatry 24:7982. [AFO]CrossRefGoogle ScholarPubMed
Olney, J. W. (1989) Excitatory amino acids and neuropsychiatric disorders. Biological Psychiatry 26:505–25. [KLRJ]CrossRefGoogle ScholarPubMed
Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poulter, M. & Riley, G. J. (1978) Increased dopamine–receptor sensitivity in schizophrenia. Lancet ii:223–26. [aJAG]CrossRefGoogle Scholar
Owens, D. G. C., Johnstone, E. C. & Frith, C. D. (1982) Spontaneous involuntary disorders of movement: Their prevalence, severity and distribution in chronic schizophrenics with and without treatment with neuroleptics. Archives of General Psychiatry 39:452–61. [aJAG, MP, AnC]CrossRefGoogle ScholarPubMed
Papez, J. W. (1937) A proposed mechanism of emotion. Archives of Neurology and Psychiatry 38:725–43. [NRS]CrossRefGoogle Scholar
Parish, E. (1897) Hallucinations and illusions. Walter Scott. [AFO]Google Scholar
Patel, S. & Slater, P. (1988) Effects of GABA compounds injected into the subpallidal regions of rat brain on nucleus accumbens evoked hyperactivity. Behavioral Neuroscience 102:596600. [MS]CrossRefGoogle ScholarPubMed
Patterson, T. (1987) Studies toward the subcortical pathogenesis of schizophrenia. Schizophrenia Bulletin 13:555–76. [aJAG, TP]CrossRefGoogle ScholarPubMed
Patterson, T., Spohn, H. E. & Hayes, K. (1987) Topographic evoked potentials during backward masking in schizophrenics, patient controls and normal controls. Progress in Neuro–Psychopharmacology & Biological Psychiatry 11:709–28. [TP]Google Scholar
Pavlov, I. P. (1927) Conditioned reflexes. Oxford University Press. [MED]Google Scholar
Pay, R. G. (1980a) Conative regulation of cortical activity by the reticular formation, hypothalamus, and thalamus. International Journal of Neuroscience 10:233–53. [TP]CrossRefGoogle ScholarPubMed
Pay, R. G. (1980b) Contextual organization of unitary information processes in the cortex by the thalamus and basal ganglia and the central control of attention. International Journal of Neuroscience 11:249–78. [TP]CrossRefGoogle ScholarPubMed
Pay, R. G. (1981) Control of complex conation and emotion in the neocortex by the limbic entorhinal, subicular, and cingulate cortices and the hypothalamus, mammilary body and thalamus. International Journal of Neuroscience 15:130. [TP]CrossRefGoogle Scholar
Pay, R. G. (1982) Behavioral steering in dual and social states of conation by the amygdala, hypothalamus, ventral striatum, and thalamus. International Journal of Neuroscience 16:140. [TP]CrossRefGoogle ScholarPubMed
Pearce, J. M. & Hall, G. (1980) A model for Pavlovian learning: Variations in the effectiveness of conditioned but not unconditioned stimuli. Psychological Review 87:532–52. [rJAG, JG, NAS]CrossRefGoogle Scholar
Penney, J. B. & Young, A. B. (1981) GABA as the pallidothalamic neurotransmitter. Implications for basal ganglia function. Brain Research 207:195–99. [aJAG]CrossRefGoogle ScholarPubMed
Penney, J. B. & Young, A. B. (1983) Speculations on the functional anatomy of basal ganglia disorders. Annual Review of Neuroscience 6:7394. [NRS]CrossRefGoogle ScholarPubMed
Penney, J. B. & Young, A. B. (1986) Striatal inhomogeneities and basal ganglia function. Movement Disorders 1:315. [AC]CrossRefGoogle ScholarPubMed
Percheron, G.; Francois, C., Yelnik, J. & Fenelon, G. (1989) The primate nigro–striatal–pallido–nigral System. Not a mere loop. In: Neural mechanisms in disorders of movement, eds. Grossman, A. R. & Sambrook, M. A.. John Libby. [DH]Google Scholar
Perez, M. M., Trimble, M. R.; Murray, N. N. F. & Reider, I. (1985) Epileptic psychosis: An evaluation of PSE profiles. British Journal of Psychiatry 146:155–63. [JHW]CrossRefGoogle ScholarPubMed
Petrides, M. (1987) Conditional learning and the primate frontal cortex. In: The frontal lobes revisited, ed. Perecman, E.. IRBN Press. [CF]Google Scholar
Pfefferbaum, A., Ford, J. M., White, P. & Roth, W. T. (1989) P3 in schizophrenia is affected by stimulus modality, response requirements, medication status and negative symptoms. Archives of General Psychiatry 46:1035–44. [PHV]CrossRefGoogle ScholarPubMed
Pfohl, B. & Winokur, G. (1982) The evolution of symptoms in institutionalized hebephrenic/catatonic schizophrenics. British Journal of Psychiatry 141:567–72. [aJAG, RS]CrossRefGoogle ScholarPubMed
Phillipson, O. T. & Griffiths, A. C. (1985) The topographical order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–96. [aJAG]CrossRefGoogle ScholarPubMed
Phillis, J. W. & Kirkpatrick, J. R. (1980) The actions of motilin, luteinizing hormone releasing hormone, cholecystokinin, somatostatin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Canadian Journal of Physiology and Pharmacology 58:612–23. [aJAG]CrossRefGoogle ScholarPubMed
Pickar, D. (1988) Perspectives on a time dependent model of neuroleptic action. Schizophrenia Bulletin 14:255–68. [rJAG]CrossRefGoogle ScholarPubMed
Pickar, D., Labarca, R., Doran, A. R., Wolkowitz, O. M., Roy, A., Breier, A., Linnoila, M. & Paul, S. M. (1986) Longitudinal measurement of homovanillic acid levels in schizophrenic patients: Correlation with psychosis and response to neuroleptic treatment. Archives of General Psychiatry 43:669–76. [GGD]CrossRefGoogle ScholarPubMed
Pogue-Geile, M. F. & Harrow, M. (1988) Negative symptoms in schizophrenia: Their longitudinal course and prognostic importance. Schizophrenia Bulletin 11:427–30. [aJAG]CrossRefGoogle Scholar
Pogue–Geile, M. F. & Oltmanns, T. F. (1980) Sentence perception and distractibility in schizophrenic, manic, and depressed patients. Journal of Abnormal Psychology 89:115–24. [REL]CrossRefGoogle Scholar
Pope, S. E., Dean, P. & Redgrave, P. (1980) Dissociation of d–amphetamine–induced locomotor activity and stereotyped behaviour by lesions of the superior colliculus. Psychopharmacology 70:297302. [aJAG]CrossRefGoogle ScholarPubMed
Posey, B. T. & Losch, M. E. (1983–84) Auditory hallucinations of hearing voices in 375 normal subjects. Imagination, Cognition, & Personality 3:99113. [MH]CrossRefGoogle Scholar
Posner, M. I. (1982) Cumulative development of attentional theory. American Psychology 37:168–79. [aJAG]CrossRefGoogle Scholar
Posner, M. I., Early, T. S., Reiman, E. M., Pardo, P. J. & Dhawan, M. (1988) Asymmetries in hemispheric control of attention in schizophrenia. Archives of General Psychiatry 45:814–21. [rJAG, IJE, TSE, GC]CrossRefGoogle ScholarPubMed
Pritchard, W. S. (1986) Cognitive event–related potential correlates of schizophrenia. Psychological Bulletin 100:4366. [PHV]CrossRefGoogle ScholarPubMed
Prochazka, A. (1989) Sensorimotor gain control: A basic strategy of motor systems?. Progress in Neurobiology 33:281307. [DH]CrossRefGoogle ScholarPubMed
Puente, G. P., Cannon, D. S., Best, M. R. & Carrell, L. E. (1988) Occasion setting of fluid ingestion by contextual cues. Learning and Motivation 19:239–53. [REL]CrossRefGoogle Scholar
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine in rats. Nature 286:7477. [aJAG]CrossRefGoogle ScholarPubMed
Raine, A., Harrison, G., Reynolds, G. P., Sheard, C., Cooper, J. E. & Medley, I. (in press) Structural and functional characteristics of the corpus callosum in schizophrenics, psychiatric controls, and normal controls: An MRI and neuropsychological evaluation. Archives of General Psychiatry. [TDC]Google Scholar
Raisman, G. (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Research 14:2548. [JRS]CrossRefGoogle ScholarPubMed
Rappaport, J. L. & Wise, S. P. (1988) Obsessive–compulsive disorder: Evidence for basal ganglia dysfunction. Psychopharmacology Bulletin 24:380–84. [NRS]Google Scholar
Rawlins, J. N. P. (1985) Associations across time: The hippocampus as a temporary memory store. Behavioral and Brain Sciences 8:479528. [rJAG]CrossRefGoogle Scholar
Rawlins, J. N. P., Feldon, J. & Gray, J. A. (1980) The effects of hippocampectomy and of fimbria section upon the partial reinforcement extinction effect in rats. Experimental Brain Research 38:273–83. [arJAG]CrossRefGoogle ScholarPubMed
Rawlins, J. N. P., Feldon, J., Tonkiss, J. & Coffey, P. J. (1989) The role of subicular output in the development of the partial reinforcement extinction effect. Experimental Brain Research 77:153–60. [arJAG]CrossRefGoogle ScholarPubMed
Reisberg, B. (1983) Alzheimer's disease. The standard reference. The Free Press. [MS]Google Scholar
Rescorla, R. A. (1985) Facilitation and inhibition. In: Information processing in animals: Conditioned inhibition, ed. R, R. R. & Spear, N. E.. Erlbaum. [REL]Google Scholar
Rescorla, R. A. (1986) Extinction and facilitation. Journal of Experimental Psychology: Animal Behavior Processes 12:1624. [REL]Google Scholar
Reynolds, G. P. (1987) Postmortem neurochemical studies in schizophrenia. In: Search for the causes of schizophrenia, ed. Hafher, H., Gattaz, W. F. & Janzavik, W.. Springer–Verlag. [aJAG]Google Scholar
Reynolds, G. P. (1989) Beyond the dopamine hypothesis – the neurochemical pathology of schizophrenia. British Journal of Psychiatry 155:305–16. [MP]CrossRefGoogle ScholarPubMed
Rickert, E. J. & Lorden, J. F. (1989) Forebrain monoamines and associative learning: III the US preexposure effect. Behavioural Brain Research 35:147–52. [RDO]CrossRefGoogle Scholar
Rickert, E. J., Lorden, J. F., Dawson, R. & Smyly, E. (1981) Limbic lesions and the blocking effect. Physiology and Behavior 26:601–06. [RDO]CrossRefGoogle ScholarPubMed
Ridley, R. M. & Baker, H. F. (1983) Is there a relationship between social isolation, cognitive inflexibility, and behavioural stereotypy? An analysis of the effects of amphetamine in the marmoset. In: Ethnopharmacology: Primate models of neuropsychiatry disorders, ed. Miczek Alan, K. A.R. Liss. [AnC]Google Scholar
Ridley, R. M., Aitken, D. N. & Baker, H. F. (1989) Learning about rules, but not about reward is impaired following lesions of the cholinergic projection to the hippocampus. Brain Research 502:306–18. [CF]CrossRefGoogle Scholar
Ridley, R. M., Baker, H. F., & Haystead, T. A. G. (1981) Perseverative behaviour after amphetamine: Dissociation of response tendency from reward association. Psychopharmacology 75:283–86. [rJAG, CF]CrossRefGoogle ScholarPubMed
Riklan, M. & Cooper, R. S. (1975) Psychometric studies of verbal functions following thalamic lesions in humans. Brain and Language 2:4564. [AFO]CrossRefGoogle ScholarPubMed
Robbins, T. W. & Everitt, B. J. (1982) Functional studies of the central catecholamines. International Review of Neurobiology 23:303–65. [aJAG, ARC]CrossRefGoogle ScholarPubMed
Robbins, T. W., Watson, B. A., Gaskin, M. & Ennis, C. (1983) Contrasting interactions of pipradol, d–amphetamine, cocaine, cocaine analogues, apomorphine, and other drugs with conditioned reinforcement. Psychopharmacology 80:113–19. [IW]CrossRefGoogle ScholarPubMed
Roberts, G. W. (1990) Schizophrenia: The cellular biology of a functional psychosis. Trends in Neuroscience 13:207–11. [MS]CrossRefGoogle ScholarPubMed
Roberts, G. W., Ferrier, I. N., Lee, Y., Crow, T. J., Johnstone, E. C., Owens, D. G. C., Bararese-Hamilton, A. J., McGregor, G., O'Shaughnessy, D., Polak, J. M. & Bloom, S. R. (1983) Peptides, the limbic lobe and schizophrenia. Brain Research 288:199211. [arJAG, LP]CrossRefGoogle ScholarPubMed
Robertson, L. C. (1986) From gestalt to neo–gestalt. In Approaches to cognition: Contrast and controversies, ed. knapp, T. J. & Robertson, L. C.. L. Erlbaum. [RDO]Google Scholar
Robertson, M. M. (1989) The Gilles de la Tourette syndrome: The current status. British Journal of Psychiatry 154:147–69. [NRS]CrossRefGoogle ScholarPubMed
Rochester, S. R. (1978) Are language disorders in acute schizophrenics actually information processing problems?. Journal of Psychiatric Research 14:275–83. [REL]CrossRefGoogle ScholarPubMed
Rodnick, E. H. & Shakow, D. (1940) Set in the schizophrenic as measured by a composite reaction time index. American Journal of Psychiatry 97:214–25. [IJE]CrossRefGoogle Scholar
Rolls, E. T. (1986a) Information representation, processing and storage in the brain: Analysis at the single neuron level. In: Neural and molecular mechanisms of learning, ed. Ritter, R. & Ritter, S.. Springer– Verlag. [aJAG]Google Scholar
Rolls, E. T. (1986b) A theory of emotion, and its application to understanding the neural basis of emotion. In: Emotions: Neural and chemical control, ed. Oomura, Y.. Japan Scientific Societies Press Karger. [aJAG]Google Scholar
Rolls, E. T. & Williams, G. V. (1987) Sensory and movement related neuronal activity in different regions of the primate striatum. In: Basal ganglia and behavior: Sensory aspects and motor functioning, ed. Schneider, J. S. & Kidsky, T. I.. Hans Huber. [aJAG]Google Scholar
Romo, R. et al. (1986) In vivo presynaptic control of dopamine release in the cat caudate nucleus – III. Further evidence for the implication of corticostriatal glutamatergic neurons. Neuroscience 19:1091–99. [aJAG]CrossRefGoogle ScholarPubMed
Rosen, W. G., Mohs, R. C., Celeste, A. J., Small, N. S., Kendler, K. S., Horvath, T. B. & Davis, K. L. (1984) Positive and negative symptoms in schizophrenia. Psychiatry Research 13:277–84. [MS]CrossRefGoogle ScholarPubMed
Rund, B. R. (1986) Verbal hallucinations and information processing. Behavioral and Brain Sciences 9:531–32. [aJAG]CrossRefGoogle Scholar
Russell, V. A., Allin, R., Lamm, M. C. L. & Taljaard, J. J. F. (1989) Increased dopamine D2 receptor–mediated inhibition of [*14] acetylcholine release in the dorsomedial part of the nucleus accumbens. Neurochemical Research 14:877–81. [MS]CrossRefGoogle ScholarPubMed
Sabatino, M., Gravante, G., Ferraro, G., Savatteri, V. & La Grutta, V. (1988) Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Research 2:380–86. [RDO]CrossRefGoogle ScholarPubMed
Saccuzzo, D. P. & Braff, D. L. (1981) Early information processing deficit in schizophrenia: New findings using subgroups & manic control subjects. Archives of General Psychiatry 38:175179. [RDO]CrossRefGoogle ScholarPubMed
Salzinger, K. (1957) Shift in judgment of weights as a function of anchoring stimuli and instructions in early schizophrenics and normals. Journal of Abnormal and Social Psychology 55:4349. [KS]CrossRefGoogle ScholarPubMed
Salzinger, K. (1971) The immediacy hypothesis and schizophrenia. In: The future of time: Man's temporal environment, ed. Yaker, H. M., Osmond, H. & Cheek, F.. Doubleday. [IJE]Google Scholar
Salzinger, K. (1984) The immediacy hypothesis in a theory of schizophrenia. In: Nebraska symposium on motivation: Theories of schizophrenia and psychosis. University of Nebraska Press. [KS]Google Scholar
Salzinger, K.& Pisoni, S. (1960) Reinforcement of verbal affect responses of normal subjects during the interview. Journal of Abnormal and Social Psychology 60:127–30. [KS]CrossRefGoogle ScholarPubMed
Salzinger, K., Portnoy, S., Pisoni, D. & Feldman, R. S. (1970) The immediacy hypothesis and response–produced stimuli in schizophrenic speech. Journal of Abnormal and Social Psychology 76:258–64. [KS]CrossRefGoogle ScholarPubMed
Sandyk, R. & Kay, S. R. (in press a) Negative schizophrenia: A variant of Parkinsonism. An integrated hypothesis of the pathophysiology of schizophrenia. International Journal of Neuroscience. [RS]Google Scholar
Sandyk, R. & Kay, S. R. (in press b) Third ventricular width and negative schizophrenia. International Journal of Neuroscience. [RS]Google Scholar
Sandyk, R.& Kay, S. R. (in press c) Negative schizophrenia as a variant of Parkinsonism. International Journal of Neuroscience. [RS]Google Scholar
Sandyk, R.& Kay, S. R. (in press d) Habituation of the glabellar tap reflex as a marker of negative schizophrenia. International Journal of Neuroscience. [RS]Google Scholar
Sarter, M., Bruno, J. P., & Dudchenck, P. (1990) Activating the damaged basal forebrain cholinergic system: Tonic stimulation versus signal amplification. Psychopharmacology 101:117. [MS]CrossRefGoogle ScholarPubMed
Schallert, T., De Ryck, M. & Teitelbaum, P. (1980) Atropine stereotypy as a behavioral trap: A movement subsystem and electroencephalographic analysis. Journal of Comparative and Physiological Psychology 94:124. [JHW]CrossRefGoogle Scholar
Schaltenbrand, G. (1975) The effects on speech and language of stereotactical stimulation in the thalamus and corpus callosum. Brain and Language 2:7077. [AFO]CrossRefGoogle ScholarPubMed
Schmajuk, N. A. (1984) A model for the effects of hippocampal lesions on Pavlovian conditioning. Abstracts of the 14th annual meeting of the Society for Neuroscience 10:124. [NAS]Google Scholar
Schmajuk, N. A. (1987) Animal models of schizophrenia: The hippocampally lesioned animal. Schizophrenia Bulletin 12:317–27. [aJAG, WEC, NAS, MP]CrossRefGoogle Scholar
Schmajuk, N. A. (1989) The hippocampus and the control of information storage in the brain. In: Dynamic interactions in neural networks: Models and data, ed. Arbib, M. & Amari, S. I.. Springer–Verlag. [NAS]Google Scholar
Schmajuk, N. A. (1990) Role of the hippocampus in temporal and spatial navigation: An adaptive neural network. Behavioural Brain Research, in press. [NAS]CrossRefGoogle Scholar
Schmajuk, N. A. & Moore, J. W. (1985) Real–time attentional models for classical conditioning and the hippocampus. Physiological Psychology 11:278–90. [NAS]CrossRefGoogle Scholar
Schmajuk, N. A. (1988) The hippocampus and the classically conditioned nictitating membrane response: A real–time attentional–associative model. Psychobiology 46:2035. [NAS]CrossRefGoogle Scholar
Schmajuk, N. A. & Tyberg, M. (1990) The hippocampal lesion model of schizophrenia. In: Neuromethods: Animal models in psychiatry I, vol. 19, ed. Boulton, A. A., Baker, G. B. & Martin-Iverson, M. T.. Humana Press. [NAS]Google Scholar
Schneider, W.& Shiffrin, R. M. (1977) Controlled and automatic human information processing: I. Detection, search and attention. Psychological Review 84:166. [arJAG]CrossRefGoogle Scholar
Schwartz, S. (1982) Is there a schizophrenic language?. Behavioral and Brain Sciences 5:579626. [aJAG]CrossRefGoogle Scholar
Schwartz-Place, E. J. & Gilmore, G. C. (1980) Perceptual organization in schizophrenia. Journal of Abnormal Psychology 89:409–18. [JRS, RDO]CrossRefGoogle Scholar
Schwegler, H., Crusio, W. E. & Brust, I. (1990) Hippocampal mossy fibers and radial–maze learning in the mouse: A correlation with spatial working memory but not with non–spatial reference memory. Neuroscience 34:293–98. [rJAG, WEC]CrossRefGoogle Scholar
Scoville, W. B. & Milner, B. (1957) Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry 20:1121. [MP]CrossRefGoogle ScholarPubMed
Seagraves, M. A. & Goldberg, M. E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. Journal of Neurophysiology 58:13871419. [aJAG]CrossRefGoogle Scholar
Seeman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. P. & Tourtelotte, W. W. (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225:728–31. [arJAG, MP]CrossRefGoogle ScholarPubMed
Segal, D. S. & Janowsky, D. S. (1978) Psychostimulant–induced behavioral effects: Possible models of schizophrenia. In: Psychopharmacology: A generation of progress, ed. Liupton, M. A., DiMascio, A. & Killam, K. F.. Raven Press. [AnC]Google Scholar
Shakow, D. (1962) Segmental set: A theory of psychological deficit in schizophrenia. Archives of General Psychiatry 6:117. [HES]CrossRefGoogle Scholar
Shakow, D. (1963) Psychological deficit in schizophrenia. Behavioral Science 8:275305. [AnC, IJE]CrossRefGoogle ScholarPubMed
Shakow, D. (1977) Segmental set: The adaptive process in schizophrenia. American Psychologist 32:129–39. [AnC]CrossRefGoogle ScholarPubMed
Shelton, R. C. & Weinberger, D. R. (1986) X–ray computerized tomography studies in schizophrenia: A review and synthesis. In: Handbook of schizophrenia: The neurology of Schizophrenia, Vol. 1, ed. Nasarallah, H. A. & Weinberger, D. R.. [AR]Google Scholar
Shenton, M. E., Faux, S. F., McCarley, R. W., Ballinger, R., Coleman, M., Torello, M. & Duffy, F. H. (1989) Correlations between abnormal auditory P300 topography and positive symptoms in schizophrenia: A preliminary report. Biological Psychiatry 25:710–16. [GGD]CrossRefGoogle ScholarPubMed
Shepherd, M. (1987) Formulation of new research strategies in schizophrenia. In: Search for the causes of schizophrenia, ed. Hafner, H., Gattaz, W. F. & Janzavik, W.. Springer Verlag. [aJAG]Google Scholar
Simon, H., Taghzouti, K., Gozlan, H., Studler, J. M., Louilot, A., Hervé, D., Glowinski, J., Tassin, J. P. & LeMoal, M. (1988) Lesion of dopaminergic terminals in the amygdala produces enhanced locomotor response to D–amphetamine and opposite changes in dopaminergic activity in prefrontal cortex and nucleus accumbens. Brain Research 447:335–40. [TSE]CrossRefGoogle ScholarPubMed
Slater, E., Beard, A. W. & Glithero, E. (1963) The schizophrenia–like psychoses of epilepsy. British Journal of Psychiatry 109:95150. [JHW]Google Scholar
Smith, M., Wolf, A. P., Brodie, J. D., Arnett, C. D., Barouche, F., Shiue, C. -Y., Fowler, J. S., Russell, J. A. G., MacGregor, R. R., Wolkin, A., Angrist, B., Rotrosen, J. & Peselow, E. (1988) Serial [*18F] N–methylspiroperidol PET studies to measure change in antipsychotic drug D2 receptor occupancy in schizophrenic patients. Biological Psychiatry 23:653–63. [GGD]CrossRefGoogle ScholarPubMed
Smolensky, P. (1989) Connectionist modeling: Neural computation/mental connections. In: Neural connections, mental computation, ed. Nadet, L., Cooper, L. A., Culicover, P. & Harnish, R. M.. MIT Press. [DH]Google Scholar
Snyder, S. H. (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Archives of General Psychiatry 27:169–79. [LJI]CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973) Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines. American Journal of Psychiatry 130:6167. [GGD]CrossRefGoogle ScholarPubMed
Snyder, S. H. (1980) Phencyclidine. Nature 285:355–56. [KLRJ]CrossRefGoogle ScholarPubMed
Solomon, P. R. (1977) Role of the hippocampus in blocking and conditioned inhibition of the rabbit's nictating membrane response. Journal of Comparative and Physiological Psychology 91:407–17. [aJAG]CrossRefGoogle Scholar
Solomon, P. R. & Staton, D. M. (1982) Differential effects of microinjections of d–amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Biological Psychiatry 17:743–56. [aJAG, RDO]Google ScholarPubMed
Solomon, P. R., Crider, A., Winkelman, J. W., Turi, A., Kamer, R. M. & Kaplan, L. J. (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol–induced supersensitivity: Relationship to schizophrenic attention disorder. Biological Psychiatry 16:519–37. [aJAG, AnC]Google ScholarPubMed
Solomon, P. R., Kiney, C. A. & Scott, D. R. (1978) Disruption of latent inhibition following systemic administration of parachlorophenylalanine (PCPA). Physiology and Behaviour 20:265–71. [aJAG]CrossRefGoogle ScholarPubMed
Solomon, P. R., Nichols, G. W., Kiernon, J. M. III & Kamer, R. S. (1980) Differential effects of lesions in medial and dorsal raphe of the rat: Latent inhibition and septohippocampal serotonin levels. Journal of Comparative & Physiological Psychology 94:145–54. [aJAG]CrossRefGoogle ScholarPubMed
Somogyi, P., Bolam, J. P., Totterdell, S.& Smith, A. D. (1981) Monosynaptic input from the nucleus accumbens–ventral striatum region to retro–gradely labelled ntgrostriatal neurones. Brain Research 217:245–63. [aJAG]Google Scholar
Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A. & Wu, J.-Y. (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of the cat contain somatostatin– or cholecystokinin–like immunoreactivity. Journal of Neuroscience 4:25902603. [aJAG]Google Scholar
Sonders, M. S., Keana, J. F. W. & Weber, E. (1988) Phencyclidine and psychotomimetic sigma opiates: Recent insights into their biochemical and physiological sites of action. Trends in Neurosciences 11:3740. [KLRJ]CrossRefGoogle ScholarPubMed
Sperber, D.& Wilson, D. (1987) Précis of relevance: Communication and cognition. Behavioral and Brain Sciences 10:697754. [CF]CrossRefGoogle Scholar
Spohn, H. E. (1984) Discussion in: Theories of schizophrenia and psychosis, ed. Spaulding, N. D. & Cole, J. K.. University of Nebraska Press. [rJAG]Google Scholar
Spohn, H. E. & Coyne, L. (1989) Behavioral phenotypes and pathogenic traits in schizophrenia. Presentation at the meetings of the Society for Research in Psychopathology, Coral Gables, FL. [HES]Google Scholar
Spohn, H. E. & Patterson, T. (1979) Recent studies of psychophysiology in schizophrenia. Schizophrenia Bulletin 5:581611. [GC]CrossRefGoogle ScholarPubMed
Spohn, H. E., Coyne, L. & Spray, J. (1988) The effect of neuroleptics and tardive dyskinesia on smooth–pursuit eye movement in chronic schizophrenics. Archives of General Psychiatry 45:833–40. [HES]CrossRefGoogle ScholarPubMed
Spring, B. (1985) Distractibility as a marker of vulnerability to schizophrenia. Psychopharmacology Bulletin 21:509–12. [IJE]Google ScholarPubMed
Springer, J. E. & Isaacson, R. L. (1982) Catecholamine alterations in basal ganglia after hippocampal lesions. Brain Research 252:185–88. [aJAG, MP, TSE]CrossRefGoogle ScholarPubMed
Stein, L. & Wise, C. D. (1971) Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–36. [RS]CrossRefGoogle Scholar
Steinfels, G. F., Tarn, S. W. & Cook, L. (1989) Electrophysiological effects of selective sigma receptor agonists, antagonists, and selective pliencyclidine receptor agonist MK-801 on midbrain dopamine neurons. Neuropsychopharmacology 2:201–08. [KLRJ]CrossRefGoogle ScholarPubMed
Steinhauer, S. R. & Zubin, J. (1982) Vulnerability to schizophrenia: Information processing in the pupil and event-related potential. In: Biological markers in psychiatry and neurology, ed. Usdin, E. & Hanin., I.Pergamon Press. [GGD]Google Scholar
Stevens, J. R. (1973) An anatomy of schizophrenia. Archives of General Psychiatry 29:177–89. [aJAG]CrossRefGoogle ScholarPubMed
Stevens, J. R. (1982) Neuropathology of schizophrenia. Archives of General Psychiatry 39:1131–39. [RS]CrossRefGoogle ScholarPubMed
Stevens, J. R. & Livermore, A. (1978) Kindling of the mesolimbic dopamine system: Animal model of psychosis. Neurology 28:3646. [JRS]CrossRefGoogle ScholarPubMed
Stevens, J. R., Wilson, K. & Foote, W. (1974) GABA blockade, dopamine and schizophrenia: Experimental studies in the cat. Psychopharmacologia 39:105–19. [JRS]CrossRefGoogle ScholarPubMed
Straube, E. R. & Oades, R. D. (1991) Schizophrenia: an empirical perspective of psychology, neuropsychology, risk and outcome. Academic Press. [RDO]Google Scholar
Strauss, J. S. (1987) Processes of healing and chronicity in schizophrenia. In: Search for the causes of schizophrenia, ed. Hafher, H., Gattaz, W. F. & Janzavik, W.. Springer–Verlag. [aJAG]Google Scholar
Strecker, R. E. & Jacobs, B. (1987) Dopaminergic unit activity and behavior. In: Neurophysiology of dopaminergic systems – current status and clinical perspectives, ed. Chiodo, L. A. & Freeman., A. S.Lakeshore Publishing. [MP]Google Scholar
Su, T.-P., Weissman, A. D. & Yeh, S.-Y. (1986) Endogenous ligands for sigma opioid receptors in the brain (“sigmaphin”): Evidence from binding assays. Life Sciences 38:21992210. [KLRJ]Google ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F. & Weinberger, D. R. (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322:789–94. [PHV]CrossRefGoogle ScholarPubMed
Sutherland, N. S. & Mackinstrosh, N. J. (1971) Mechanisms of animal discrimination learning. Academic Press. [rJAG]Google Scholar
Sutherland, R. J., McDonald, R. J., Hill, C. R. & Rudy, J. W. (1989) Damage to the hippocampal formation in rats selectively impairs the ability to learn cue relationships. Behavioral Neural Biology 52:331–56. [RDO]CrossRefGoogle Scholar
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–88. [PHV]CrossRefGoogle ScholarPubMed
Sutula, T., Cascino, G., Cavazos, J., Parada, I. & Ramirez, L. (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Annals of Neurology 26:321–30. [JRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (1984) Substantia innominata: Critical link in the behavioral expression of mesolimbic dopamine stimulation in the rat. Neuroscience Letters 50:1924. [MS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (1987a) Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico–striato– pallidothalamic function. Behavioral and Brain Sciences 10:197245. [arJAG, LJI, NRS]CrossRefGoogle Scholar
Swerdlow, N. R. & Koob, G. F. (1987b) Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: Effects on locomotor activity mediated by the nucleus accumbens-ventral pallidal circuitry. Brain Research 412:233–43. [NRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Braff, D. L. & Geyer, M. A. (1990c) GABAergic projection from nucleus accumbens to ventral pallidum mediates dopamine-induced sensorimotor gating deficits of acoustic startle in rats. Brain Research (in press). [NRS]CrossRefGoogle Scholar
Swerdlow, N. R., Braff, D. L., Masten, V. L. & Geyer, M. A. (1990b) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology 102:414–20. [NRS]CrossRefGoogle Scholar
Swerdlow, N. R., Caine, B. & Geyer, M. A. (1990e) Deficits in sensorimotor gating of acoustic startle following carbachol infusion into the hippocampus. Abstracts of the Society for Neuroscience 16:754. [NRS]Google Scholar
Swerdlow, N. R., Geyer, M., Braff, D. & Koob, G. F. (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle in schizophrenics. Biological Psychiatry 21:2333. [NRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Keith, V. A., Braff, D. L. & Geyer, M. A. (1990d) The effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine-inhibition of sensorimotor gating of the startle response in the rat. Journal of Pharmacology and Experimental Therapeutics (in press). [NRS]Google Scholar
Swerdlow, N. R., Koob, G. F., Geyer, M. A., Mansbach, R. & Braff, D. L. (1988) A cross-species model of psychosis. In: Animal models of psychiatric disorders, ed. Simon, P., Soubrié, P., & Widlocher, D.. Karger. [NRS]Google Scholar
Swerdlow, N. R., Mansbach, R. S., Geyer, M. A., Pulvirenti, L., Koob, G. F. & Braff, D. L. (1990a) Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology 100:413–16. [NRS]CrossRefGoogle ScholarPubMed
Takasaka, Y. (1985) Movement-related cerebral potentials in schizophrenics. Folia Psychiatrica et Neurologica Japonica 39:173–83. [GGD]Google ScholarPubMed
Tam, S. W. & Cook, L. (1984) Sigma opiates and certain antipsychotic drugs mutually inhibit (+) [*3H]SKF10,047 and [*3H] haloperidol binding in guinea pig membranes. Proceedings of the National Academy of Sciences 81:5620–21. [KLRJ]CrossRefGoogle Scholar
Tandon, R. & Greden, J. F. (1989) Cholinergic overactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Archives of General Psychiatry 46:745–53. [rJAG, RS, MS]CrossRefGoogle Scholar
Tauck, D. L. & Nadler, J. V. (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. Journal of Neuroscience 5:1016–22. [JRS]CrossRefGoogle ScholarPubMed
Teuber, H.-L. (1968) Alteration of perception and memory in man. In: Analysis of behavioral change, ed. Weiskrantz, L.. Harper & Row. [EG]Google Scholar
Timsit-Berthier, M., Delaunoy, J. & Rousseau, J. C. (1973) Slow potential changes in psychiatry. II. Motor potential. Electroencephalography and Clinical Neurophysiology 35:363–67. [GGD]CrossRefGoogle ScholarPubMed
Tomer, R. & Flor-Henry, P. (1989) Neuroleptics reverse attention asymmetries in schizophrenic patients. Biological Psychiatry 25:852–60. [TSE]CrossRefGoogle ScholarPubMed
Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, . & Diemer, N. H. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neuroscience Letters 109:247–52. [WEC]CrossRefGoogle ScholarPubMed
Totterdell, S. & Smith, A. D. (1986) Cholecystokinin-immunoreaetive boutons in synaptic contact with hippocampal pyramidal neurons that project to the nucleus accumbens. Neuroscience 19:181–92. [aJAG]CrossRefGoogle ScholarPubMed
Totterdell, S. & Smith, A. D. (1987) Hippocampal and dopaminergic inputs to the nucleus accumbens converge onto the same neurons. British Journal of Pharmacology 92:684 P. [aJAG]Google Scholar
Totterdell, S. & Smith, A. D. (1989) Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. Journal of Chemical Neuroanatomy 2:285–98. [aJAG, JRS]Google ScholarPubMed
Trend, P., Trimble, M. R. & Wessley, S. (1989) Schizophrenic psychosis associated with benzhexol (artane) therapy. Journal of Neurology, Neurosurgery and Psychiatry 52:115. [JHW]CrossRefGoogle ScholarPubMed
Trimble, M. R. (1990) First rank symptoms of schizophrenia. A new perspective. British Journal of Psychiatry 156:195200. [LP]CrossRefGoogle ScholarPubMed
Tsaltas, E., Preston, G. C., Rawlins, J. N. P., Winocur, G. & Gray, J. A. (1984) Dorsal bundle lesions do not affect latent inhibition of conditioned suppression. Psychopharmacology 84:549–55. [arJAG]CrossRefGoogle Scholar
Tucker, D. M. & Williamson, P. A. (1984) Asymmetric neural control systems in human self-regulation. Psychological Review 91:185215. [EG]CrossRefGoogle ScholarPubMed
Turski, W. A., Cavalheiro, E. A., Ikonomidou, C., Bortolotto, Z. A., Klockgether, C. & Turski, L. (1990) Dopamine control of seizure propagation: Intranigral dopamine Dl agonist SKF-38393 enhances susceptibility to seizures. Synapse 5:113–19. [RDO]CrossRefGoogle Scholar
Van Abeelen, J. H. F. (1989) Genetic control of hippocampal cholinergic and dynorphinergic mechanisms regulating novelty-induced exploratory behavior in house mice. Experientia 45:839–45. [WEC]CrossRefGoogle ScholarPubMed
Van Buren, J. M. (1975) The question of thalamic participation in speech mechanisms. Brain and Language 2:3144. [AFO]CrossRefGoogle ScholarPubMed
Van den Bos, R. & Cools, A. R. (1989) The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviours, Life Science 44:16971704. [ARC]CrossRefGoogle ScholarPubMed
Van Eerdewegh, M. M., van Eerdewegh, P., Coryell, W., Clayton, P. J., Endicott, J., Koepke, J. & Rochberg, N. (1987) Schizo-affective disorders: Bipolar-unipolar subtyping. Natural history variables: A discriminant analysis approach. Journal of Affective Disorders 12:223–32. [WEC]CrossRefGoogle ScholarPubMed
Van Kammen, D. P., van Kammen, W. B., Mann, L. S., Seppala, T. & Linnoila, M. (1986) Dopamine metabolism in the cerebrospinal fluid of drug-free schizophrenic patients with and without cortical atrophy. Archives of General Psychiatry 43:978–83. [RS]CrossRefGoogle ScholarPubMed
Van Putten, T. & May, P. R. A. (1978) “Akinetic depression” in schizophrenia. Archives of General Psychiatry 35:1101–07. [RS]CrossRefGoogle Scholar
Vanderwolf, C. H. (1988) Cerebral activity and behavior; Control by central cholinergic and serotonergic systems. International Review of Neurobiology 30:225340. [rJAG, JHW]CrossRefGoogle ScholarPubMed
Venables, P. H. (1960) Periodicity in reaction time. British Journal of Psychology 51:3743. [PHV]CrossRefGoogle ScholarPubMed
Venables, P. H. (1964) Input dysfunction in schizophrenia. In: Progress in experimental personality research, vol. 1, ed. Maher, B. A.. Academic Press. [IJE]Google Scholar
Venables, P. H. (1973) Input regulation and psychopathology. In: Psychopathology; Contributions from the social, behavioural, and biological sciences, ed. Hammer, M., Salzinger, M. & Sutton, S.. Wiley. [GC]Google Scholar
Venables, P. H. (1984) Cerebral mechanisms, autonomic responsiveness and attention to schizophrenia. In: Theories of schizophrenia and psychosis, ed. Spaulding, W. D. & Cole., J. K.University of Nebraska Press. [aJAG, IJE]Google Scholar
Verleger, R. (1988) Event-related potentials and cognition: A critique of the context-updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences 11:343–56. [PHV]CrossRefGoogle Scholar
Vogel, F. & Motulsky, A. G. (1986) Human genetics: Problems and approaches. Springer–Verlag. [WEC]CrossRefGoogle Scholar
Vogel-Sprott, M. D. (1967) Partial-reward training for resistance to punishment and to subsequent extinction. Journal of Experimental Psychology 75:138–40. [rJAG]CrossRefGoogle ScholarPubMed
Wagner, A. R. (1976) Priming in STM: An information-processing mechanism for self-generated or retrieval-generated depression of performance. In: Habituation: Perspectives from child development, animal behavior, and neuropsychology, ed. Tighe, T. J. & Leighton, R. N.. Lawrence Erlbaum. [JG]Google Scholar
Wagner, A. R. (1978) Expectancies and the priming of STM. In: Cognitive processes in animal behavior, ed. Hulse, S. H., Fowler, H. & Honig, W. K.. Erlbaum. [rJAG]Google Scholar
Wagner, A. R. & Rescorla, R. A. (1972) Inhibition in Pavlovian conditioning: Application of a theory. In: Inhibition and learning, ed. Boakes, R. A. & Halliday, M. S.. Academic Press. [aJAG]Google Scholar
Walker, E. & McGuire, M. (1982) Intra- and interhemispheric information processing in schizophrenia. Psychological Bulletin 92:701–25. [GC]CrossRefGoogle ScholarPubMed
Warburton, D. M. (1989) Drugs and the processing of information. In: Cognitive neurochemistry, ed. Stahl, S. M., Iversen, S. D. &: Goodman, E. C.. Oxford University Press. [JHW]Google Scholar
Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44:660–60. [arJAG, EG, RDO, LP]CrossRefGoogle ScholarPubMed
Weinberger, D. R., Cannon-Spoor, E., Potkin, S. G., Wyatt, R. J. (1980) Poor premorbid adjustment and CT scan abnormalities in chronic schizophrenia. American Journal of Psychiatry 137:1410–13. [LP]Google ScholarPubMed
Weinberger, D. R., Berman, K. F. & Zee, R. F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry 43:114–24. [AR]CrossRefGoogle ScholarPubMed
Weiner, I. (1990) Neural substrates of latent inhibition: The switching model. Psychological Bulletin 108:442–61. [rJAG, IW, REL]CrossRefGoogle ScholarPubMed
Weiner, I. & Feldon, J. (1986) Reversal and nonreversal shifts under amphetamine. Psychopharmacology 89:355–59. [rJAG, IW]CrossRefGoogle ScholarPubMed
Weiner, I. & Feldon, J. (1987) Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology 91:248–53. [aJAG]CrossRefGoogle ScholarPubMed
Weiner, I., Ben-Horin, E. & Feldon, J. (1986a) Amphetamine and the overtraining reversal effect. Pharmacology, Biochemistry, and Behavior 24:1539–42. [rJAG, IW]CrossRefGoogle ScholarPubMed
Weiner, I., Ben-Horin, E. & Feldon, J. (1986b) Simultaneous brightness discrimination and reversal: The effects of amphetamine administration in the two stages. Pharmacology, Biochemistry and Behavior 25:939–42. [rJAG, IW]CrossRefGoogle ScholarPubMed
Weiner, I., Bercovitz, H., Lubow, R. E. & Feldon, J. (1985) The abolition of the partial reinforcement extinction effect (PREE) by amphetamine. Psychopharmacology 86:318––23. [aJAG]CrossRefGoogle ScholarPubMed
Weiner, I., Feldon, J. & Ben-Horin, E. (1987a) Facilitation of discrimination transfers under amphetamine: The relative control by S+ and S– and general transfer effects. Psychopharmacology 93:261–67. [rJAG, IW]CrossRefGoogle Scholar
Weiner, I., Feldon, J. & Bercovitz, H. (1987b) The abolition of the partial reinforcement extinction effect (PREE) by amphetamine: Disruption of control by non-reinforcement. Pharmacology, Biochemistry and Behavior 27:205–10. [aJAG]CrossRefGoogle Scholar
Weiner, I., Feldon, J. & Katz, Y. (1987c) Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacology, Biochemistry and Behavior 26:241–46. [aJAG]CrossRefGoogle Scholar
Weiner, I., Feldon, J. & Ziv-Harris, D. (1987d) Early handling and latent inhibition in the conditioned suppression paradigm. Developmental Psychobiology 20:233–40. [rJAG]CrossRefGoogle ScholarPubMed
Weiner, I., Halevy, C., Alroy, C. & Feldon, J. (1987e) The effects of early handling on the partial reinforcement extinction effect and the partial punishment effect in male and female rats. Quarterly Journal of Experimental Psychology 39B:245–63. [rJAG]Google Scholar
Weiner, I., Izraeli-Telerant, A. & Feldon, J. (1987f) Latent inhibition is not affected by acute or chronic administration of 6mg/kg dl-amphetamine. Psychopharmacology 91:345–51. [aJAG, IW]CrossRefGoogle ScholarPubMed
Weiner, I., Lubow, R. E. & Feldon, J. (1981) Chronic amphetamine and latent inhibition. Behavioural Brain Research 2:285–86. [aJAG]CrossRefGoogle Scholar
Weiner, I., Lubow, R. E. & Feldon, J. (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83:194–99. [aJAG]CrossRefGoogle Scholar
Weiner, I., Lubow, R. E. & Feldon, J. (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry and Behaviour 30:871–78. [arJAG]CrossRefGoogle ScholarPubMed
Weiner, I., Schnabel, I., Lubow, R. E. & Feldon, J. (1985) The effects of early handling on latent inhibition in male and female rats. Developmental Psychology 18:291–97. [rJAG]CrossRefGoogle ScholarPubMed
Weissman, A. D., Su, T.-P., Hedreen, J. C. & London, E. D. (1988) Sigma receptors in postmortem human brains. Journal of Phannacology and Experimental Therapeutics 247:2933. [KLRJ]Google Scholar
Wells, D. S. & Leventhal, D. (1984) Perceptual grouping in schizophrenia: A replication of Place and Gilmore. Journal of Abnormal Psychology 93:231–34. [RDO]CrossRefGoogle ScholarPubMed
West, L. J. (1975) A clinical and theoretical overview of hallucinatory phenomena. In; Hallucinations: Behaviour, experience, and theory, ed. Siegel, R. K. & West., L. J.Wiley. [KLRJ]Google Scholar
Westphal, K. P., Grozinger, B., Haag, C., Scherb, W., Diekmann, V. & Kornhuber, H. H. (1987) The influence of biperidine on the EEG power spectra during the Bereitschaftspotential paradigm. Electroencephalography and Clinical Neurophysiology (Suppl.) 40:556–61. [JHW]Google Scholar
Williams, M. N. & Faull, R. L. M. (1988) The nicrotectal projection and tectospinal neurons in the rat. A light and electron microscopic study demonstrating a monosynaptic nigral input to identified tectospinal neurons. Neuroscience 25:533–62. [aJAG]CrossRefGoogle Scholar
Willick, M. S. (1990) Schizophrenia: A parent's perspective. Paper presented at the American Psychopathology Association (APPA) conference, New York, NY. [IJE]Google Scholar
Wilson, D. A., Willner, J., Kurz, E. M. & Nadel, L. (1986) Early handling increases hippocampal long–term potentiation in young rats. Behavioral Brain Research 21:223–27. [rJAG]CrossRefGoogle ScholarPubMed
Winocur, G., Rawlins, J. N. P. & Gray, J. A. (1987) The hippocampus and conditioning to contextual cues. Behavioral Neuroscience 101:617–25. [rJAG]CrossRefGoogle ScholarPubMed
Wolkin, G., Barouche, F., Wolf, A. P., Rotrosen, J., Fowler, J. S., Shiue, C.-Y., Cooper, T. B. & Brodie, J. D. (1989) Dopamine blockade and clinical response: Evidence for two biological subgroups of schizophrenia. American Journal of Psychiatry 146:905–08. [GGD]Google ScholarPubMed
Wong, D. F., Wagner, H. N., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Brousolle, E. P., Ravert, H. T., Wilson, A. A., Young, J. K. T., Malat, J.; Williams, J. A., O'Tuama, L. A., Snyder, S. H., Kuhar, M. J. & Gjedde, A. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug–naive schizophrenics. Science 234:1558–63. [aJAG, REH, LP]CrossRefGoogle ScholarPubMed
Wong, E. H. F., Knight, A. R. & Woodruff, G. N. (1988) [*3H] MK–801 labels at sites on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. Journal of Neurochemistry 50:274–81. [KLRJ]CrossRefGoogle ScholarPubMed
Woodard, J. S. (1962) Concentric hyaline inclusion body formation in mental disease analysis of twenty-seven cases. Journal of Neuropathology and Experimental Neurology 21:442–49. [rJAG, RS]CrossRefGoogle ScholarPubMed
Wu, J. C., Siegel, B. V., Haier, R. J. & Buchsbaum, M. S. (1990) Testing the Swerdlow-Koob model of schizophrenia pathophysiology using positron emission tomography. Behavioral and Brain Sciences 13:169–70. [NRS]CrossRefGoogle Scholar
Wurtz, R. H. & Albano, J. E. (1980) Visual-motor function of the primate superior colliculus. Annual Review of Neuroscience 3:189226. [aJAG]CrossRefGoogle ScholarPubMed
Yang, C. R. & Mogensen, G. J. (1987a) Hippocampal signal transmission to the pedunculopontine nucleus and its regulation by dopamine D2 receptors in the nucleus accumbens: An electrophysiological and behavioural study. Neuroscience 23:1041–55. [aJAG, MS]CrossRefGoogle Scholar
Yang, C. R. & Mogensen, G. J. (1987b) Dopamine enhances the terminal excitability of hippocampalnucleus accumbens neurones by D2 receptor. Journal of Neuroscience 6:2470–78. [NAS]CrossRefGoogle Scholar
Yang, C. R. & Mogensen, G. J. (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Research 489:237–46. [MS]CrossRefGoogle ScholarPubMed
Yarden, P. E. & Discipio, W. J. (1971) Abnormal movements and prognosis in schizophrenia. American Journal of Psychiatry 128:317–23. [rJAG, AnC]CrossRefGoogle ScholarPubMed
Zaborsky, L., Heimer, L., Eckenstein, F. & Lernath, C. (1986) GABAergic imput to cholinergic forebrain neurons: An ultrastructural study using retrograde tracing of HRP and double immunolabeling. Journal of Comparative Neurology 250:282–95. [MS]CrossRefGoogle Scholar
Zahn, T. P. (1988) Studies of autonomic psychophysiology and attention in schizophrenia. Schizophrenia Bulletin 14:205–8. [rJAG]CrossRefGoogle ScholarPubMed
Zahn, T., Frith, C. D. & Steinhauer, S. (in press) Autonomic functioning: Electrodermal activity, heart rate, pupilography. In: Handbook of schizophrenia: Neuropsychology, psychophysiology, and information processing, vol. 4, ed. Aubin, J., Steinhauer, S. & Gruzelier, J. H.. Elsevier. [CF]Google Scholar
Zhou, G.-Z., Young, D.-W., Lu, M.-K., Zhang, L.-D., Yao, J.-L., Lu-Fel, H.-Q., Gao, H. & Zhang, A.-Z. (1988) Contents of endogenous phencyclidine-like substances in cerebrospinal fluid of schizophrenic patients. Acta Pharmacologica Sinica 9:515–18. [KLRJ]Google ScholarPubMed
Zigmond, M. J., Acheson, A. L., Stachowiak, M. K. & Strickerm, E. M. (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Parkinsonism. Archives of Neurology 41:856–61. [RS]CrossRefGoogle Scholar
Zubin, J. & Spring, B. (1977) Vulnerability – a new view of schizophrenia. Journal of Abnormal Psychology 86:103–26. [KHN]CrossRefGoogle ScholarPubMed
Zuckerman, M. (1982) Leaping up the phylogenetic scale in explaining anxiety: Perils and possibilities. Peer commentary on multiple book review of “The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septohippocampal System.” Behavioral and Brain Sciences 5:505–06. [aJAG]CrossRefGoogle Scholar
Zuckerman, M. (1984) Sensation seeking: A comparative approach to a human trait. Behavioral and Brain Sciences 7:413–71. [GC]CrossRefGoogle Scholar