Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T15:54:46.606Z Has data issue: false hasContentIssue false

Cortex in context: Response to commentaries on neural reuse

Published online by Cambridge University Press:  22 October 2010

Michael L. Anderson
Affiliation:
Department of Psychology, Franklin & Marshall College, Lancaster, PA 17603, and Institute for Advanced Computer Studies, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742. [email protected]://www.agcognition.org

Abstract

In this response, I offer some specific examples of neural workings, discuss the uncertainty of reverse inference, place neural reuse in developmental and cultural context, further differentiate reuse from plasticity, and clarify my position on embodied cognition. The concept of local neural workings is further refined, and some different varieties of reuse are identified. Finally, I lay out some opportunities for future research, and discuss some of the clinical implications of reuse in more detail.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2003) Embodied cognition: A field guide. Artificial Intelligence 149(1):91103.CrossRefGoogle Scholar
Anderson, M. L. (2007b) Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese 159(3):329–45.CrossRefGoogle Scholar
Anderson, M. L. (2008b) Evolution, embodiment and the nature of the mind. In: Beyond the brain: Embodied, situated and distributed cognition, ed. Hardy-Vallee, B. & Payette, N., pp. 1528. Cambridge Scholar's Press.Google Scholar
Anderson, M. L. (2009) What mindedness is. Europe's Journal of Psychology 5(3). Available at: http://www.ejop.org/archives/2009/11/what_mindedness.html.Google Scholar
Anderson, M. L., Brumbaugh, J. & Şuben, A. (2010) Investigating functional cooperation in the human brain using simple graph-theoretic methods. In: Computational neuroscience, ed. Chaovalitwongse, A., Pardalos, P. M. & Xanthopoulos, P., pp. 3142. Springer.CrossRefGoogle Scholar
Anderson, M. L. & Rosenberg, G. (2008) Content and action: The guidance theory of representation. Journal of Mind and Behavior 29 (1–2):5586.Google Scholar
Badets, A. & Pesenti, M. (2010) Creating number semantics through finger movement perception. Cognition 115:4653.CrossRefGoogle ScholarPubMed
Bergeron, V. (2008) Cognitive architecture and the brain: Beyond domain-specific functional specification. Unpublished doctoral dissertation, Department of Philosophy, University of British Columbia. Available at: http://circle.ubc.ca/handle/2429/2711.Google Scholar
Boyd, R. & Richerson, P. J. (2009) Culture and the evolution of human cooperation. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 364:3281–88.CrossRefGoogle ScholarPubMed
Brincker, M. (forthcoming) Moving beyond mirroring – A social affordance model of sensorimotor integration during action perception. Doctoral dissertation, Department of Philosophy, Graduate Center, City University of New York. (forthcoming in September 2010).Google Scholar
Butterworth, B. (1999c) What counts – How every brain is hardwired for math. The Free Press.Google Scholar
Catania, K. C. & Remple, F. E. (2004) Tactile foveation in the star-nosed mole. Brain, Behavior, and Evolution 63:112.Google Scholar
Chemero, A. (2009) Radical embodied cognitive science. MIT Press.CrossRefGoogle Scholar
Coltheart, M. (2006) What has functional neuroimaging told us about the mind (so far)? Cortex 42(3):323–31.CrossRefGoogle ScholarPubMed
Dehaene, S., Bossini, S. & Giraux, P. (1993) The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General 122:371–96.Google Scholar
Devlin, R. H., D'Andrade, M., Uh, M. & Biagi, C. A. (2004) Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions. Proceedings of the National Academy of Sciences USA 101(25):9303–308.CrossRefGoogle ScholarPubMed
Di Luca, S., Graná, A., Semenza, C., Seron, X., & Pesenti, M. (2006) Finger-digit compatibility in Arabic numerical processing. The Quarterly Journal of Experimental Psychology 59(9):1648–63.Google Scholar
Fox, P. T., Parsons, L. M. & Lancaster, J. L. (1998) Beyond the single study: Function-location meta-analysis in cognitive neuroimaging. Current Opinions in Neurobiology 8:178–87.Google Scholar
Garcia-Bafalluy, M. & Noël, M.-P. (2008) Does finger training increase young children's numerical performance? Cortex 44:368–75.CrossRefGoogle Scholar
Ginsberg, J. S. & McCarthy, J. J. (2001) Personalized medicine: Revolutionizing drug discovery and patient care. Trends in Biotechnology 19(12):491–96.CrossRefGoogle Scholar
Glenberg, A. M. & Kaschak, M. P. (2002) Grounding language in action. Psychonomic Bulletin and Review 9:558–65.CrossRefGoogle ScholarPubMed
Glenberg, A. M., Sato, M. & Cattaneo, L. (2008a) Use-induced motor plasticity affects the processing of abstract and concrete language. Current Biology 18:R290–91.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S. (2003) Hearing gesture: How our hands help us think. Belknap Press.Google Scholar
Grill-Specter, K., Henson, R. & Martin, A. (2006) Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences 10(1):1423.CrossRefGoogle Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J. & Sporns, O. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology 6(7):e159. Available at: http://biology.plosjournals.org/perlserv/?request=get-document. doi:10.1371/journal.pbio.0060159.CrossRefGoogle ScholarPubMed
Harnad, S. (1990) The symbol grounding problem. Physica D 42:335–46.Google Scholar
Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. (2009) Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences USA 104 (52):20753–58.CrossRefGoogle Scholar
Jablonka, E. & Lamb, M. J. (2006) Evolution in four dimensions. MIT Press.Google Scholar
Kitayama, S. & Cohen, D., eds. (2007) Handbook of cultural psychology. Guildford Press.Google Scholar
Klein, C. (2010) Images are not the evidence in neuroimaging. British Journal for the Philosophy of Science 61:265–78.Google Scholar
Krekelberg, B., Boynton, G. M. & van Wezel, R. J. A., (2006) Adaptation: From single cells to BOLD signals. Trends in Neurosciences 29(5):250–56.CrossRefGoogle ScholarPubMed
Landy, D., Allen, C. & Anderson, M. L. (in press) Conceptual discontinuity through recycling old processes in new domains. Commentary on Susan Carey: Précis of The Origin of Concepts. Behavioral and Brain Sciences 33(6).Google Scholar
Landy, D. & Goldstone, R. L. (2007a) Formal notations are diagrams: Evidence from a production task. Memory and Cognition 35(8):203340.Google Scholar
Landy, D. & Goldstone, R. L. (2007b) How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, and Cognition 33(4):720–33.Google Scholar
Muller, K., Lohmann, G., Bosch, V. & von Cramon, D.Y., (2001) On multivariate spectral analysis of fMRI time series. NeuroImage 14 347–56.CrossRefGoogle ScholarPubMed
Muller, K., Mildner, T., Lohmann, G. & von Cramon, D. Y., (2003) Investigating the stimulus-dependent temporal dynamics of the BOLD signal using spectral methods. Journal of Magnetic Resonance Imaging 17:375–82.Google Scholar
O'Donovan-Anderson, M., ed. (1996) The incorporated self: Interdisciplinary perspectives on embodiment. Rowman & Littlefield.Google Scholar
O'Donovan-Anderson, M. (1997) Content and comportment: On embodiment and the epistemic availability of the world. Rowman & Littlefield.Google Scholar
Paus, T. (2010) Population neuroscience: Why and how. Human Brain Mapping 31(6):891903.Google Scholar
Penner-Wilger, M. (2009) Subitizing, finger gnosis, and finger agility as precursors to the representation of number. Unpublished doctoral dissertation, Department of Cognitive Science, Carleton University, Ottawa, Canada. http://gradworks.umi.com/NR/52/NR52070.Google Scholar
Penner-Wilger, M. & Anderson, M. L. (2008) An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, Austin, TX, July 23–26, 2008, ed. Love, B. C., McRae, K. & Sloutsky, V. M., pp. 1647–52. Cognitive Science Society.Google Scholar
Penner-Wilger, M. & Anderson, M. L. (submitted) The relation between finger recognition and mathematical ability: Why redeployment of neural circuits best explains the finding.Google Scholar
Pereira, F., Mitchell, T. & Botvinick, M. M. (2009) Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45:S199209.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences 10:5963.Google Scholar
Richerson, P. J., Boyd, R. & Henrich, J. (2010) Gene-culture coevolution in the age of genomics. Proceedings of the National Academy of Sciences USA 107:8985–92.CrossRefGoogle ScholarPubMed
Rives, A. W. & Galitski, T. (2003) Modular organization of cellular networks. Proceedings of the National Academy of Sciences USA 100:1128–33.Google Scholar
Roskies, A. L. (2007) Are neuroimages like photographs of the brain? Philosophy of Science 74:860–72.CrossRefGoogle Scholar
Schlosser, G. & Wagner, G. P., eds. (2004) Modularity in development and evolution. University of Chicago Press.Google Scholar
Spirin, V. & Mirny, L. A. (2003) Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences USA 100:12123–28.CrossRefGoogle ScholarPubMed
Sun, F. T., Miller, L. M. & D'Esposito, M. (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage 21:647–58.Google Scholar
Suomi, S. J. (2004) How gene-environment interactions shape biobehavioral development: Lessons from studies with rhesus monkeys. Research in Human Development 1:205–22.Google Scholar
Sur, M., Garraghty, P. E. & Roe, A. W. (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–41.Google Scholar
Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., Reiman, E. M. & Liu, Y. (2006) Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences USA 103:10775–80.Google Scholar
Tong, A. H. Y., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D. S., Haynes, J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J. N., Lu, H., Ménard, P., Munyana, C., Parsons, A. B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.-M., Shapiro, J., Sheikh, B., Suter, B., Wong, S. L., Zhang, L. V., Zhu, H., Burd, C. G., Munro, S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F. P., Brown, G. W., Andrews, B., Bussey, H. & Boone, C. (2004) Global mapping of the yeast genetic interaction network. Science 303:808–13.CrossRefGoogle ScholarPubMed
von Dassow, G., & Munro, E. (1999) Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution 285(4):307–25.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
von Melchner, L., Pallas, L. L. & Sur, M. (2000) Visual behavior mediated by retinal projections directed to the auditory pathway. Nature (London) 404:871–76.Google Scholar
Westin, A. D. & Hood, L. (2004) Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research 3(2):179–96.Google Scholar
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) Neural correlates of simple and complex mental calculation. NeuroImage 13:314–27.Google Scholar