Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T15:31:38.588Z Has data issue: false hasContentIssue false

Compensation for time delays is better achieved in time than in space

Published online by Cambridge University Press:  14 May 2008

Myrka Zago
Affiliation:
Scientific Institute Santa Lucia, 00179 Rome, Italy
Francesco Lacquaniti
Affiliation:
University of Rome “Tor Vergata” and Scientific Institute Santa Lucia, 00179 Rome, Italy. [email protected] [email protected]

Abstract

Mechanisms of visual prediction based on spatial extrapolation work only for targets moving at constant speed, but do not easily accommodate accelerating or decelerating motion. We argue that mechanisms based on temporal extrapolation deal with both uniform and non-uniform motion. We provide behavioural examples from interception of falling objects and suggest possible neurophysiological substrates of time extrapolation.

Type
Open Peer Commentary
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eagleman, D. M. & Sejnowski, T. J. (2000) Motion integration and postdiction in visual awareness. Science 287(5460):2036–38.CrossRefGoogle ScholarPubMed
Ferrera, V. P. & Barborica, A. (2006) A flashing line can warp your mind. Neuron 49(3):327–29.CrossRefGoogle ScholarPubMed
Krekelberg, B. & Lappe, M. (2001) Neuronal latencies and the position of moving objects. Trends in Neurosciences 24:335–39.CrossRefGoogle ScholarPubMed
Lacquaniti, F. & Maioli, C. (1989) The role of preparation in tuning anticipatory and reflex responses during catching. Journal of Neuroscience 9(1):134–48.CrossRefGoogle ScholarPubMed
Lee, D. N. (1976) A theory of visual control of braking based on information about time-to-collision. Perception 5(4):437–59.CrossRefGoogle ScholarPubMed
Leon, M. I. & Shadlen, M. N. (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–27.CrossRefGoogle ScholarPubMed
Lisberger, S. G. & Movshon, J. A. (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. Journal of Neuroscience 19:2224–46.CrossRefGoogle ScholarPubMed
Maimon, G. & Assad, J. A. (2006) A cognitive signal for the proactive timing of action in macaque LIP. Nature Neuroscience 9(7):948–55.CrossRefGoogle ScholarPubMed
McIntyre, J., Zago, M., Berthoz, A. & Lacquaniti, F. (2001) Does the brain model Newton's laws? Nature Neuroscience 4:693–94.CrossRefGoogle ScholarPubMed
Merchant, H., Battaglia-Mayer, A. & Georgopoulos, A. P. (2004) Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a. Cerebral Cortex 14:314–31.CrossRefGoogle ScholarPubMed
Price, N. S., Ono, S., Mustari, M. J. & Ibbotson, M. R. (2005) Comparing acceleration and speed tuning in macaque MT: Physiology and modeling. Journal of Neurophysiology 94:3451–64.CrossRefGoogle ScholarPubMed
Schlack, A., Krekelberg, B. & Albright, T. D. (2007) Recent history of stimulus speeds affects the speed tuning of neurons in area MT. Journal of Neuroscience 27(41):11009–18.CrossRefGoogle ScholarPubMed
Senot, P., Zago, M., Lacquaniti, F. & McIntyre, J. (2005) Anticipating the effects of gravity when intercepting moving objects: Differentiating up and down based on nonvisual cues. Journal of Neurophysiology 94(6):4471–80.CrossRefGoogle ScholarPubMed
Sundberg, K. A., Fallah, M. & Reynolds, J. H. (2006) A motion-dependent distortion of retinotopy in area V4. Neuron 49(3):447–57.CrossRefGoogle ScholarPubMed
Thiel, A., Greschner, M., Eurich, C. W., Ammermuller, J. & Kretzberg, J. (2007) Contribution of individual retinal ganglion cell responses to velocity and acceleration encoding. Journal of Neurophysiology 98(4):2285–96.CrossRefGoogle ScholarPubMed
Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P. & Lacquaniti, F. (2004) Internal models of target motion: Expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology 91:1620–34.CrossRefGoogle ScholarPubMed
Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P. & Lacquaniti, F. (2005) Fast adaptation of the internal model of gravity for manual interceptions: Evidence for event-dependent learning. Journal of Neurophysiology 93:1055–68.CrossRefGoogle ScholarPubMed
Zago, M. & Lacquaniti, F. (2005) Cognitive, perceptual and action-oriented representations of falling objects. Neuropsychologia 43:178–88.CrossRefGoogle ScholarPubMed