Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T08:54:53.889Z Has data issue: false hasContentIssue false

B-Afferents: A fundamental division of the nervous system mediating homeostasis?

Published online by Cambridge University Press:  19 May 2011

James C. Prechtl
Affiliation:
Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, Electronic mail: [email protected] Reprint requests should be addressed to: James C. Prechtl, Department of Neuroscience, A-001, University of California, San Diego, La Jolla, CA 92093
Terry L. Powley
Affiliation:
Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, Electronic mail: [email protected]

Abstract

The peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the “autonomic nervous system” (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS. We survey recent information about the PNS and argue that many of the sensory neurons designated as “visceral” and “somatic” are in fact part of a histologically distinct group of afferents concerned primarily autonomic function. These afferents have traditionally been known as “small dark” neurons or B-neurons. In this target article we outline an association between autonomic and B-neurons based on ontogeny, cell phenotype, and functional relations, grouping them together as part of a common reflex system involved in homeostasis. This more parsimonious classification of the PNS, made possible by the identification of a group of afferents associated primarily with the ANS, avoids a number of confusions produced by the classical orientation. It may also have practical implications for an understanding of nociception, homeostatic reflexes, and the evolution of the nervous system.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelli, L., Conte, B., Somma, V., Maggi, C. A., Giuliani, S., Geppetti, P., Alessandri, M., Theodorsson, E. & Meli, A. (1988) The contribution of capsaicin-sensitive sensory nerves to xylene-induced visceral pain in conscious, freely moving rats. Naunyn Schmiedeberg’s Archives of Pharmacology 337:545–51. {CAM}CrossRefGoogle Scholar
Ader, R. & Cohen, N. (1985) CNS-immune system interactions: Conditioning phenomena. Behavioral and Brain Sciences 8:379–95. {DLF}CrossRefGoogle Scholar
Agostoni, E., Chinnock, J. E., De Burgh Daly, M. & Murray, J. G. (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. Journal of Physiology (London) 135:182205. {SH}CrossRefGoogle Scholar
Ahlman, B. H. J., Larson, G. M., Bombeck, C. T. & Nyhus, I. M. (1979) Origin of the adrenergic fibers in the subdiaphragmatic vagus in the dog. American Journal of Surgery 137:116–22. {aJCP}CrossRefGoogle ScholarPubMed
Altman, J. & Bayer, S. A. (1984) The development of the spinal cord. Advances in Anatomy, Embryology, and Cell Biology 85:1166. {aJCP}Google Scholar
Amann, R. & Lembeck, F. (1986) Capsaicin-sensitive afferent neurons from peripheral glucose receptors mediate the insulin-induced increase in adrenaline secretion. Naunyn Schmiedebergs Archives of Pharmacology 334:7176. {DPY}CrossRefGoogle ScholarPubMed
Andres, K. H. (1961) Untersuchungen über den Feinbau von Spinalganglien. Zeitschrift fur Zellforschung 55:148. {arJCP}CrossRefGoogle Scholar
Andrews, P. L. R. (1986) Vagal afferent innervation of the gastrointestinal tract. Progress in Brain Research 67:6586. {PLRA, DG, SH}CrossRefGoogle ScholarPubMed
Andrews, P. L. R., & Hawthorn, J. (1987) The neurophysiology of vomiting. Clinical Gastroenterology, 2:141–68. {PLRA}Google Scholar
Anokhin, P. K. (1968) Biology and neurophysiology of conditioned reflex. Meditzina. {VGZ}Google Scholar
Ariens Kappers, C. U., Huber, G. C. & Crosby, E. C. (1967) The comparative anatomy of the nervous system of vertebrates, including man, vol I. Hafner. {rJCP}Google Scholar
Bahr, R., Blumberg, H. & Janig, W. (1981) Do dichotomizing afferent fibers exist which supply visceral organs as well as somatic structures? A contribution to the problem of referred pain. Neuroscience Letters 24:2528. {aJCP}CrossRefGoogle Scholar
Baldissera, F., Hultborn, H. & Illert, M. (1981) Integration in spinal neuronal systems. In: Handbook of physiology, section 1. The nervous system, vol. II. Motor control, part 2, ed. Brooks, V. B.. American Physiological Society. {LM}Google Scholar
Barakat, I. & Droz, B. (1987) Differentiation of postmitotic neuroblasts into substance P-immunoreactive sensory neurons in dissociated cultures of chick dorsal root ganglion. Developmental Biology 122:274–86. {aJCP}CrossRefGoogle ScholarPubMed
Barber, W. D., & Burks, T. F. (1983) Brain stem response to phasic gastric distention. American Journal of Physiology 245:G245G248. {SH}Google Scholar
(1987) Brain-gut interactions: Brain stem neuronal response to local gastric effects of substance P. American Journal of Physiology 253:G369G377. {SH}Google Scholar
Barber, W. D., Stevenson, G. D. & Burks, T. F. (1987) Tachykinins: Local gastric effects and brain stem responses. American Journal of Physiology 252:G365G373. {SH}Google ScholarPubMed
Barber, W. D., & Yuan, C. S. (1989) Gastric vagal-splanchnic interactions in the brain stem of the cat. Brain Research 487:18. {SH}CrossRefGoogle ScholarPubMed
(in press) Brain stem responses to electrical stimulation of ventral vagal gastric fibers. {SH}Google Scholar
Barber, W. D., Yuan, C. S. & Cammarata, B. J. (in press) Vagal interactions upon brain stem neurons receiving input from the proximal stomach in the cat. American Journal of Physiology. {SH}Google Scholar
Bell, C. (1811) Idea of a new anatomy of the brain; submitted for the observation of his friends. In: Selected readings in the history of physiology, ed. Fulton, J. F. & Wilson, L. G. (1966). Charles C. Thomas. {aJCP}Google Scholar
Belmonte, C. & Gallego, R. (1983) Membrane properties of cat sensory neurones with chemoreceptor and baroreceptor endings. Journal of Physiology 342:603–14. {LM}Google Scholar
Berkenbosch, J., van Oers, J., del Rey, A., Tilders, F. & Besedovsky, H. (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–26. {DLF}CrossRefGoogle ScholarPubMed
Bernard, C. (1878) Lessons on the phenomena of life common to animals and vegetables, second lecture: The three forms of life (trans. H. Hoff). In: Homeostasis: Origins of the concept, ed. Langley, L. L. (1973). Dowden, Hutchinson & Ross. {aJCP, FL}Google Scholar
Berthold, C.-H. (1966) Ultrastructural appearance of glycogen in the B-neurons of the lumbar spinal ganglia of the frog. Journal of Ultrastructural Research 14:254–67. {aJCP}Google Scholar
Besedovsky, H. O., del Rey, A., Sorkin, E., Da Prada, M., Burri, R. & Honegger, C. (1983) The immune response evokes changes in brain noradrenergic neurons. Science 221:564–65. {DLF}CrossRefGoogle ScholarPubMed
Besedovsky, H. O., del Rey, A., Sorkin, E., Da Prada, M. & Keller, H. H. (1979) Immunoregulation mediated by the sympathetic nervous system. Cellular Immunology 48:346–55. {DLF}CrossRefGoogle ScholarPubMed
Bhargava, H. N. (1988) Intragastric administration of cyclo (Leu-Gly) inhibits the development of tolerance to the analgesic effect of morphine in the rat. Life Sciences 43:187–92. {PO}CrossRefGoogle Scholar
Bichat, X. (1827) Physiological researches on life and death (trans. F. Gold). Reprinted 1977. Arno Press. {aJCP}Google Scholar
Bishop, G. H. (1959) The relation between nerve fiber size and sensory modality: Phylogenetic implications of the afferent innervation of the cortex. Journal of Nervous and Mental Disease 128:89114. {aJCP}CrossRefGoogle Scholar
Black, I. B. (1986) Trophic molecules and evolution of the nervous system. Proceedings of the National Academy of Sciences (USA) 83:8249–52. {aJCP}Google Scholar
Blalock, J. E. (1984) The immune system as a sensory organ. Journal of Immunology 132:1067–70. {DLF}CrossRefGoogle ScholarPubMed
(1989) A molecular basis for bidirectional communication between the immune and neuroendocrine system. Physiological Reviews 69:132. {DLF}Google Scholar
Bowers, C. W., Jann, L. Y., & Jan, Y. N. (1986) A substance P-like peptide in bullfrog autonomic nerve terminals: Anatomy, biochemistry, and physiology. Neuroscience 19:343–56. {aJCP}Google Scholar
Brown, A. G. (1981) Organization of the spinal cord: The anatomy and physiology of identified neurones. Springer-Verlag. {aJCP}CrossRefGoogle Scholar
Buck, S. H., & Burks, T. F. (1986) The neuropharmacology of capsaicin: Review of some recent observations. Pharmacological Review 38:179226. {GJ}Google ScholarPubMed
Bulloch, K. (1985) Neuroanatomy of lymphoid tissue: A review. In: Neural modulation of immunity, ed. Guillemin, R., Cohn, M. & Melnechuk, T.. Raven Press. {aJCP}Google Scholar
Bulygin, I. A., & Kaljunov, V. N. (1974) Receptor function of sympathetic ganglia. Naukai Tekhnika. {VGZ}Google Scholar
Bulygin, I. A., & Soltanov, V. V. (1973) electrophysiological analysis of visceral afferent systems. Nauka i Tekhnika. {VGZ}Google Scholar
Burgess, P. R., & Perl, E. R. (1967) Myelinated afferent fibres responding specifically to noxious stimulation of the skin. Journal of Physiology 190:541–62. {LM}CrossRefGoogle ScholarPubMed
(1973) Cutaneous mechanoreceptors and nociceptors. In: Handbook of sensory physiology, vol. 2: Somatosensory system, ed. Iggo, A.. Springer. {JS}Google Scholar
Cajal, S. R.(1911) Histologie du systeme nerveux de I’homme et des vertebres, tome II. Maloine. {SK}Google Scholar
Calvo, W. & Forteza-Vila, J. (1970) Schwann cells of the bone marrow. Blood 36:180–88. {rJCP}CrossRefGoogle ScholarPubMed
Cannon, W. B. (1926) Physiological regulation of normal states: Some tentative postulates concerning biological homeostatics. In: Ses Amis, ses Colleges, ses Eleves, ed. Richet, A. C., Les Editions Medicales. {FL}Google Scholar
Carpenter, M. B. (1976) Human neuroanatomy. Williams & Wilkins. {aJCP}Google Scholar
Carr, V. McM., & Simpson, S. B. Jr. (1978) Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. Journal of Comparative Neurology 182:727–40. {aJCP}Google Scholar
Cervero, F. (1985) Visceral nociception: Peripheral and central aspects of visceral nociceptive systems. Philosophical Transactions of the Royal Society of London B 308:325–37. {rJCP}Google ScholarPubMed
(1986) Dorsal horn neurons and their sensory inputs. In: Spinal afferent processing, ed. Yaksh, T. L.. Plenum Press. {aJCP}Google Scholar
Cervero, F. & Connell, L. A. (1984) Distribution of somatic and visceral primary afferent fibers within the thoracic spinal cord of the cat. Journal of Comparative Neurology 230:8898. {aJCP, JHH}CrossRefGoogle ScholarPubMed
Cervero, F., Connell, L. A. & Lawson, S. N. (1984) Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. Journal of Comparative Neurology 228:422–31. {SL}Google Scholar
Chahl, L. A. (1988) Antidromic vasodilatation and neurogenic inflammation. Pharmacology & Therapeutics 37:275300. {GJ}Google Scholar
Chahl, L. A., Szolcsanyi, J. & Lembeck, F. (1983) Antidromic vasodilatation and neurogenic inflammation. Satellite Symposium of the 29th International Congress of Physiological Sciences, Newcastle, Australia. {FL}Google Scholar
Chemigovski, V. N. (1944) Afferent fibers of sympathetic nervous system. Proceedings of Navy Medical Academy vol. 4, part 1, 97–129. {VGZ}Google Scholar
(1960) Interoreceptors. Medgiz. {VGZ}Google Scholar
Chung, J. M., Lee, K. H., Hori, Y. & Willis, W. D. (1985) Effects of capsaicin applied to a peripheral nerve on the responses of primate spinothalamic tract cells. Brain Research 329:2738. {GJ}CrossRefGoogle ScholarPubMed
Contreras, R. J., & Frank, M. (1979). Sodium deprivation alters neural responses to gustatory stimuli. Journal of General Physiology 73:569–94. {SH}Google Scholar
Craig, A. D., & Mense, S. (1983) The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of HRP. Neuroscience Letters 41:233–38. {JHH, WLN}CrossRefGoogle Scholar
Crawley, J. N. (1985) Neurochemical investigation of the afferent pathway from the vagus nerve to the nucleus tractus solitarius in mediating the “satiety syndrome” induced by systemic cholecystokinin. Peptides 6(Supplement 1):133–37. {SH}CrossRefGoogle Scholar
Cuello, A. C, Del Fiacco, M. & Paxinos, G. (1978) The central and peripheral ends of substance P-containing sensory neurons in the rat trigeminal system. Brain Research 152:499509. {aJCP}CrossRefGoogle Scholar
Dale, H. H. (1933) Nomenclature of fibres in the autonomic nervous system and their effects. Journal of Physiology 80:1011. {FL}Google Scholar
Dart, R. A. (1922) The misuse of th e term “visceral.” Journal of Anatomy 56:177–88. {aJCP, JHH}Google Scholar
Dawson, I. M., Hossack, J. & Wyburn, G. M. (1955) Observations on the Nissl’s substance, cytoplasmic filaments, and the nuclear membrane of spinal ganglion cells. Proceedings of the Royal Society of London, Series B 144:132–42. {aJCP}Google Scholar
de Groat, W. C. (1986) Spinal cord projections and neuropeptides in visceral afferent neurons. In: Visceral sensation, ed. Cervero, F. & Morrison, J. F. B.. Elsevier. {aJCP, GJ, WLN}Google Scholar
de Groat, W. C, Nadelhaft, I., Milne, R. J., Booth, A. M., Morgan, C. & Thor, K. (1981) Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. Journal of the Autonomic Nervous System 3:135–60. {WLN}Google Scholar
Delbro, D., Fandriks, L., Lisander, B. & Andersson, S. A. (1982) Gastric atropine-sensitive excitation by peripheral vagal stimulation after hexa-rnethonium. Antidromic activation of afferents? Ada Physiology Scandinavia 114:433–40. {JSD}CrossRefGoogle ScholarPubMed
Dickenson, A. H., & Sullivan, A. F. (1987) Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C-fibre stimulation. Neuropharmacology 26:1235–38. {LM}CrossRefGoogle ScholarPubMed
Dimberg, Y., Hedlund, K. O. & Ebendal, T. (1987) Effects of nerve growth factor on sensory neurons in the chick embryo: A stereological study. International Journal of Developmental Neuroscience 5(3):207–13. {SR}Google Scholar
Dockray, G. J. (1987) Physiology of enteric neuropeptides. In: Physiology of the gastrointestinal tract, ed. Johnson, L. R.. Raven Press. {DG}Google Scholar
(1988) Regulatory peptides and the neuroendocrinology of gut-brain relations. Quarterly Journal of Experimental Physiology 73:703–27. {JSD}Google Scholar
Dockray, G. J., & Sharkey, K. A. (1986) Neurochemistry of visceral afferent neurons. In: Progress in brain research, 67, Visceral sensation, ed. Cervero, F. & Morrision, J. BB. F.. Elsevier. 143–48. {SR}Google Scholar
Dodd, J., Jahr, C. E., Hamilton, P. N., Heath, M. J. S., Matthew, W. D. & Jessell, T. M. (1983) Cytochemical and physiological properties of sensory and dorsal horn neurons that transmit cutaneous sensation. Cold Spring Harbour Symposium of Quantitative Biology 48:685–95. {JSD}CrossRefGoogle ScholarPubMed
Dodd, J. & Jessell, T. M. (1985) Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of the rat spinal cord. Journal of Neuroscience 5:3278–94. {rJCP}Google Scholar
(1986) Cell surface glycoconjugates and carbohydrate-binding proteins: Possible recognition signals in sensory neurone development. Journal of Experimental Biology 124:225–38. {rJCP}CrossRefGoogle Scholar
Donnerer, J. (1988) Reflex activation of the adrenal medulla during hypoglycemia and circulatory dysregulation is regulated by capsaicinsensitive afferents. Naunyn Schmiedeberg’s Archives of Pharmacology 338:282–86. {DPY}Google Scholar
Duce, I. R., & Keen, P. (1977) An ultrastructural classification of the neuronal cell bodies of th e rat dorsal root ganglion using zinc iodide-osmium impregnation. Cell and Tissue Research 185:263–77. {aJCP}CrossRefGoogle Scholar
Dyck, P. J., Mellinger, J. F., Reagan, T. J., Horowitz, S. J., McDonald, J. W., Litchy, W. J., Daube, J. R., Fealty, R. D., Go, V. L., Kao, P. C, Brimijoin, W. S. & Lambert, E. H. (1983) Not “indifference to pain” but varieties of hereditary sensory and autonomic neuropathy. Brain 106:373–90. {aJCP}CrossRefGoogle ScholarPubMed
Edelman, G. M. (1988) Topobiology: An introduction to molecular embryology. Basic Books. {FL}Google Scholar
Erichsen, J. T., Karten, H. J., Eldred, W. D. & Brecha, N. C. (1982) Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: Light and electron microscopy. Journal of Neuroscience 2:9941003. {aJCP}CrossRefGoogle ScholarPubMed
Felten, D. L., Ackerman, K. D., Wiegand, S. J. & Felten, S. Y. (1987a) Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. Journal of Neuroscience Research 18:2836. {DLF}Google Scholar
Felten, D. L., Felten, S. Y., Bellinger, D. L., Carlson, S. L., Ackerman, K. D., Madden, K. S., Olschowka, J. A. & Livnat, S. (1987b) Noradrenergic sympathetic neural interaction s with the immune system: Structure and function. Immunological Reviews 100:225–60. {DLF}CrossRefGoogle ScholarPubMed
Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A. & Livnat, S. (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of Immunology 135:755s–65s. {aJCP}CrossRefGoogle ScholarPubMed
Felten, D. L., Felten, S. Y., Madden, K. S., Ackerman, K. D. & Bellinger, D. L. (1989) Development, maturation and senescence of sympathetic innervation of secondary immune organs. In: Development, maturation and senescence of neuroendocrine systems, ed. Schreibman, M. P. & Scanes, C. G.. Academic Press. {DLF}Google Scholar
Felten, D. L., & Sladek, J. R. Jr. (1983) Monoamine distribution in primate brain. V. Monoaminergic nuclei: Anatomy, pathways and local organization. Brain Research Bulletin 10:171284. {DLF}CrossRefGoogle Scholar
Felten, S. Y., Carlson, S. L., Bellinger, D. L. & Felten, D. L. (1986) Overview of the efferent autonomic nervous system. In: Neuroregulation of autonomic, evidence, and immune systems, ed. Frederickson, R., Hendrie, H. C., Hingtgen, J. N. & Aprison, M. H.. Martinus-Nijhof. {DLF}Google Scholar
Felten, S. Y., Felten, D. L., Bellinger, D. L., Carlson, S. L., Ackerman, K. D., Madden, K. S., Olschowka, J. A.Livnat, S. (1988) Noradrenergic sympathetic innervation of lymphoid organs. Progress in Allergy 43:1436. {DLF}Google ScholarPubMed
Felten, S. Y., & Olschowka, J. A. (1987) Noradrenergi c sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synaptic-like contacts on lymphocytes in the splenic white pulp. Journal of Neuroscience Research 18:3748. {DLF}Google Scholar
Fitzgerald, M. (1983) Capsaicin and sensory neurons - A review. Pain 15:109–30. {aJCP, GJ}Google Scholar
Fitzgerald, M. & Gibson, S. (1984) The postnatal physiological and neurochemical development of peripheral sensory C-fibers. Neuroscience 13:933–44. {aJCP}CrossRefGoogle Scholar
Flourens, P. (1842) Recherches experimentales sur les proprietes et les fonctions du systeme nerveux dans les animaux vertebres, 2d ed. Baillere. {JHH}Google Scholar
Fontaine-Perus, J., Chanconie, M. & La Douarin, N. M. (1985) Embryonic origin of substance P-containing neurons in cranial and spinal sensory ganglia of the avian embryo. Developmental Biology 107:227–38. {arJCP}Google Scholar
Foreman, R. D., Blair, R. W. & Ammons, W. S. (1986) Neural mechanisms of cardiac pain. In: Visceral sensation, ed. Cervero, F. & Morrison, J. F. B.. Elsevier. {aJCP}Google Scholar
Fujita, T. & Kobayashi, S. (1979) Current views on the paraneurone concept. Trends in Neuroscience 2:2730. {rJCP}CrossRefGoogle Scholar
Fuller, R. W., Felten, S. Y., Perry, K. W., Siroddy, H. D. & Felten, D. L. (1981) Sympathetic noradrenergic innervation of guinea pig liver: Histofluorescence and pharmacologic studies. Journal of Pharmacology and Experimental Therapeutics 218:282–88. {DLF}Google Scholar
Fulton, B. P. (1987) Postnatal changes in conduction velocity and soma action potential parameters of rat dorsal root ganglion neurones. Neuroscience Letters 73:125–30. {LM}Google Scholar
Fyffe, R. E. W. (1984) Afferent fibers. In: Handbook of the spinal cord, ed. Davidoff, R. A.. Marcel Dekker. {GJ}Google Scholar
Gabella, G. (1976) Structure of the autonomic nervous system. Chapman & Hall. {aJCP}CrossRefGoogle Scholar
Gallego, R. & Eyzaguirre, C. (1978) Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. Journal of Neurophysiology 41:1217–32. {rJCP, JSD}Google Scholar
Gaskell, W. H. (1886) On the structure, distribution, and function of the nerves which innervate the visceral and vascular systems. Journal of Physiology (London) 7:180. {aJCP}Google Scholar
(1916) The involuntary nervous system. Longmans, Green. {aJCP}Google Scholar
Gasser, H. S. (1955) Properties of dorsal root unmedullated fibers on the two sides of the ganglion. Journal of General Physiology 38:709–28. {aJCP}CrossRefGoogle ScholarPubMed
Gasser, H. S., & Erlanger, J. (1929) the role of fiber size in the establishmen t of a nerve block by pressure or cocaine. American Journal of Physiology 88:581–91. {arJCP}Google Scholar
Geisthovel, E., Ludwig, O. & Simon, E. (1986) The role of fiber size in th e establishment of a nerve block by pressure or cocaine. American Journal of Physiology 88:581–91. {rJCP}Google Scholar
Geppetti, P., Frilli, S., Renzi, D., Santiciolo, P., Maggi, C. A., Theodorsson, E. & Fanciullacci, M. (1988) Distribution of CGRP-like immunoreactivity in various rat tissues: Correlation with substance P and other tachykinins and sensitivity to capsaicin. Regulatory Peptides 23:289–98. {CAM}Google Scholar
Gibbens, I. L., Campbell, G. C, Morris, J. L., Nilsson, S. & Murphy, R. (1987) Pathway-specific connections between peptide-containing preganglionic and postganglionic neurons in the vagus nerve of the toad (Bufo marinus). Journal of the Autonomic Nervous System 20:4355. {aJCP}Google Scholar
Goetzl, E. J., Chernov, T., Renold, F. & Payan, D. G. (1985) Neuropeptide regulation of the expression of immediate hypersensitivity. Journal of Immunology 135:802s–5s. {aJCP}CrossRefGoogle ScholarPubMed
Goetzel, E. J., Sreedharan, S. P. & Harkonen, W. S. (1988) Pathogenetic roles of neuroimmunologic mediators. Immunology and Allergy Clinics of North America 8:183200. {DLF}Google Scholar
Gome, R. C, Pfister, C, Rathsack, R. & Oehme, P. (1984) Zur zellularen Verteilung von Substanz P im Nebennierenmark der Ratte. Biomedica Biochimica Ada 43:135–37. {PO}Google Scholar
Gosnell, B. A., & Hsiao, S. (1984) Effects of cholecystokinin on taste preference and sensitivity in rats. Behavioral Neuroscience 98:452–60. {SH}CrossRefGoogle ScholarPubMed
Gould, S. J. (1977) Ontogeny and phylogeny. Belknap Press. {rJCP}Google Scholar
Grundy, D. (1988) Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract. Journal of Autonomic Nervous System 22:175—80. {DG}Google Scholar
Guyton, A. C.(1986) Textbook of medical physiology, 7th ed. W. B. Saunders. {aJCP}Google Scholar
Ha, H. (1970) Axonal bifurcation in the dorsal root ganglion of the cat: A light and electron microscopic study. Journal of Comparative Neurology 140:227–40. {aJCP}Google Scholar
Hakanson, R., Bynke, G., Beding, B. & Wahlestedt, C. (1985) Tachykinin antagonists suppress responses to ocular injury in the rabbit. In: Tachykinin antagonists, ed. Hakanson, R. & F., Sundler. Elsevier. {aJCP}Google Scholar
Hamburger, V. (1961) Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. Journal of Experimental Zoology 148:91124. {aJCP}Google Scholar
Hamburger, V. & Levi-Montalcini, R. (1949) Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. Journal of Experimental Zoology 148:91124. {aJCP}CrossRefGoogle Scholar
Hardebo, J. E. (1984) The involvement of trigeminal substance P neurons in cluster headache: An hypothesis. Headache 24:294304. {aJCP}Google Scholar
Harper, A. A., & Lawson, S. N. (1985) Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. Journal of Physiology 359:4763. {rJCP}Google Scholar
Harper, G. P., & Thoenen, H. (1981) Target cells, biological effects, and mechanism of action of nerve growth factor and its antibodies. Annual Reviews of Pharmacology and Toxicology 21:205–29. {aJCP}Google Scholar
Harrison, G. B., ed. (1968) Shakespeare. The complete works. Harcourt, Brace & World. {JHH}Google Scholar
Head, H., Rivers, W. H. R., & Sherren, J. (1905) The afferent nervous system from a new aspect. Brain 28:99115. {aJCP}Google Scholar
Hecht, K., Oehme, P., Kolometseva, I. A., Lyovshima, I. P., Poppei, M. & Airapetjanz, M. G. (1980) Effect of substance P analogue on chronic deprivation of sleep of wistar rats under stress. In: Neuropeptides and neural transmission, ed. Marsan, C. A. & Traczyk, W. Z.. Raven Press. {PO}Google Scholar
Hecht, K., Oehme, P. & Poppei, M. (1982) Action of substance P and a substance P-hexapeptide analogue on avoidance learning in rats. Pharmazie 37:791–92. {PO}Google Scholar
Hefti, F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. Journal of Neuroscience 6:2155. {DLF}Google Scholar
Heinbecker, P., Bishop, G. H. & O’Leary, J. L. (1934) Analysis of sensation in terms of the nerve impulse. Archives of Neurology and Psychiatry 31:3453. {aJCP}CrossRefGoogle Scholar
Henry, J. L. (1980) Substance P and pain: An updating. Trends in Neurosciences 3:9597. {aJCP}CrossRefGoogle Scholar
Hermann, G. E., & Rogers, R. C. (1985) Convergence of vagal and gustatory afferent input within th e parabrachial nucleus of the rat. Journal of the Autonomic Nervous System 13:117. {SH}Google Scholar
Herrick, C. J. (1903) The doctrine of nerve components and some of its applications. Journal of Comparative Neurology 13:301–12. {arJCP, WLN}Google Scholar
(1922) What are viscera? Journal of Anatomy 56:167–76. {aJCP, JHH}Google Scholar
(1927) An introduction to neurology. W. B. Saunders. {arJCP}Google Scholar
Hess, A. (1955) The fine structure of young and old spinal ganglia. Anatomical Record 123:399423. {aJCP}Google Scholar
Higashi, H. (1986) Pharmacological aspects of visceral sensory receptors. Progress in Brain Research 67:149–62. {JSD}Google Scholar
Hillarp, N.-A. (1959) The construction and functional organization of the autonomic innervation apparatus. Ada Physiologica Scandinavia Supplement 157:1–38. {SK}Google Scholar
Hille, B. (1984) Ionic channels of excitable membranes. Sinauer Associates. {LM}Google Scholar
Himms-Hagen, J. (1984) Thermogenesis in brown adipose tissue as a buffer. Implications for obesity. New England Journal of Medicine 311:1549–58. {DLF}Google Scholar
Hokfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. & Arimura, A. (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience 1:131–36. {aJCP}CrossRefGoogle ScholarPubMed
Hokfelt, T., Elfvin, L.-G., Schultzberg, M., Goldstein, M. & Nilsson, G. (1977) On the occurrence of substance P-containing fibers in sympathetic ganglia: Immunohistochemical evidence. Brain Research 132:2941. {aJCP}Google Scholar
Hokfelt, T., Kellerth, J. O., Nilsson, G. & Pernow, B. (1975) Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Research 100:235—52. {aJCP}Google Scholar
Hollt, V., Haarmann, I. & Renner, S. (1989) Morphine induces proenkephalin gene expression in the adrenal medullae of rats by a central mechanism. International Narcotics Research Conference, Ste. Adele, Canada. {PO}Google Scholar
Holzer, P. (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–68. {GJ, CAM, JS}Google Scholar
Honig, M. (1982) The development of sensory projection patterns in the embryonic chick hind limb. Journal of Physiology (London) 330:175202. {aJCP}Google Scholar
Hsiao, S. & Spencer, R. (1983) Analysis of licking responses in rats: Effects of cholecystokinin and bombesin. Behavioral Neuroscience 97:234—45. {SH}Google Scholar
Hunt, S. P. (1983) Cytochemistry of the spinal cord. In: Chemical neuroanatomy. ed. Emson, P. C.. Raven Press. {aJCP}Google Scholar
Jacobs, J. M., Carmichael, N. & Cavanagh, J. B. (1975) Ultrastructural changes in the dorsal root and trigeminal ganglia of rats poisoned with methyl mercury. Neuropathology and Applied Neurobiology 1:119. {aJCP}Google Scholar
Jancso, G. (1981) Intracisternal capsaicin: Selective degeneration of chemosensitive primary sensory afferents in the adult rat. Neuroscience Letters 27:4145. {GJ}Google Scholar
Jancso, G., Ferencsik, M., Such, G., Kiraly, E., Nagy, A. & Bujdoso, M. (1985) Morphological effects of capsaicin and its analogues in newborn and adult mammals. In: Tachykinin antagonists, ed. Hakanson, R. & Sundler, F.. Elsevier. {rJCP}Google Scholar
Jancso, G., Kiraly, E. & Jancso-Gabor, A. (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons. Nature 270:741–43. {aJCP, GJ, CAM}Google Scholar
(1980) Chemosensitive pain fibres and inflammation. International Journal of Tissue Reactions 2:5766. {GJ}Google Scholar
Jancso, G., Kiraly, E., Joo, F., Such, G. & Nagy, A. (1985) Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat. Neuroscience Letters 59:209–14. {CAM}Google Scholar
Jancso, G., Kiraly, E., Such, G., Joo, F. & Nagy, A. (1987) Neurotoxic effect of capsaicin in mammals. Ada Physiologica Hungarica 69:295313. {rJCP, GJ}Google Scholar
Jancso, G. & Maggi, C. A. (1987) Distribution of capsaicin-sensitive urinary bladder afferents in the rat spinal cord. Brain Research 418:371–76. {GJ}Google Scholar
Jancso, N. (1966) Desensitization with capsaicin and related acylamydes as a tool for studying the function of pain receptors. In: Pharmacology of pain, ed. Lim, R. K. S.. Pergamon Press. {GJ}Google Scholar
Janig, W. (1985) Systemic and specific autonomic reactions in pain: Efferent, afferent, and endocrine components. European Journal of Anaesthesiology 2:319–46. {aJCP}Google Scholar
(1985) Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Reviews of Physiology, Biochemistry, and Pharmacology 102:121213. {rJCP}Google Scholar
Jeanningros, R. (1982) Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: A putative signal for protein-induced satiety. Physiology and Behavior 28:921. {DPY}Google Scholar
Johnson, R. H., & Spalding, J. M. K. (1974) Disorders of the autonomic nervous system. F. A. Davis Co. {rJCP}Google Scholar
Joo, F., Szolcsanyi, J. & Jancso-Gabor, A. (1969) Mitochondrial alterations in the spinal ganglion cells of the rat accompanying the long-lasting sensory disturbance induced by capsaicin. Life Sciences 8:621–26. {JS}Google Scholar
Ju, G., Hokfelt, T., Brodin, E., Fahrenkrug, J., Fischer, J. A., Frey, P., Elde, R. P. & Brown, J. C. (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide-, and choleeystokinm-immunoreactive ganglion cells. Cell and Tissue Research 247:417–31. {aJCP}Google Scholar
Kai-Kai, M. A., Anderton, B. H. & Keen, P. (1986) A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase, or neurofilament protein. Neuroscience 18:475–86. {aJCP, GJ, SL}Google Scholar
Kai-Kai, M. A., Swann, R. W. & Keen, P. (1985) Localization of chromatographically characterized oxytocin and arginine-vasopressin to sensory neurone s in the rat. Neuroscience Letters 55:8388. {aJCP}Google Scholar
Kalina, M. & Wolman, M. (1970) Correlative histochemical and morphological study on the maturation of sensory ganglion cells. Histochemie 22:100–08. {aJCP}Google Scholar
Kannan, EL, Yamashita, H., Kouizumi, K. & Brooks, C. McC. (1988) Neuronal activity of the cat supraoptic nucleus is influenced by muscle small diameter afferent (group III and IV) receptors. Proceedings of the National Academy of Sciences of the United States of America 85:5744–48. {WLN}Google Scholar
Kastin, A. J., Olson, R. D., Serially, A. V. & Coy, D. H. (1979) CNS effects of peripherally administered peptides. Life Sciences 25:401–14. {PO}Google Scholar
Kawatani, ML, Erdman, S. L. & de Groat, W. C. (1985) Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat. Journal of Comparative Neurology 241:327–47. {aJCP}Google Scholar
Keef, K. D., & Kreulen, D. L. (1988) Convergence of noncholinergic afferent neurons in the inferior mesenteric ganglion of the guinea pig. Neuroscience Letters 95:161–66. {SH}Google Scholar
Kessler, J. A., Adler, J. E., Bohn, M. C. & Black, I. B. (1981) Substance P in principal sympathetic neurons: Regulation by impulse activity. Science 214:335–36. {aJCP}Google Scholar
Kessler, J. A., & Black, I. B. (1981) Similarities in development of substance P and somatostatin in peripheral sensory neurons: Effects of capsaicin and nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America 78:4644–47. {aJCP}Google Scholar
Kirchgessner, A. L., & Gershon, M. D. (1988) Projection s of submucosal neurons to the mysenteric plexus of the guinea pig intestine: In vitro tracing of microcircuits by retrograde and anterograde transport. Journal of Comparative Neurology 277:487–98. {SR}Google Scholar
Kiss, F. (1932) Sympathetic elements in the cranial and spinal ganglia. Journal of Anatomy 66:488502. {aJCP}Google Scholar
Kline, E. M., & Bidder, T. G. (1946) A study of the subjective sensations associated with extrasystoles. American Heart Journal 31:254–59. {BTE}Google Scholar
Knyihar-Csillik, E. & Csillik, B. (1981) FRAP: Histochemistry of the primary nociceptiye neuron. Progress in Histochemistry and Cytochemistry 14:1132. {aJCP}Google Scholar
Kobayashi, S., Furness, J. B., Smith, T. K. & Pompolo, S. (1989) Histological identification of the interstitial cells of Cajal in the guinea pig small intestine. Arch. Histol. Cytol. 52:277–96. {SK}CrossRefGoogle ScholarPubMed
Koerber, H. R., & Mendell, L. M. (1988) Functional specialization of central projections from identified primar y afferent fibers. Journal of Neurophysiology 60:15971614. {LM}Google Scholar
Koerber, R. H., Druzinsky, R. E. & Mendell, L. M. (1988) Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. Journal of Neurophysiology 60:1584–96. {arJCP, LM}CrossRefGoogle ScholarPubMed
Kreulen, D. L. (1984) Integration in autonomic ganglia. The Physiologist 27:4955. {SH}Google Scholar
Kreulen, D. L., & Peters, S. (1986) Noncholinergic transmission in a sympathetic ganglion of the guinea-pig elicited by colon distension. Journal of Physiology (London) 374:315–34. {SH}Google Scholar
Krukoff, T. L. (1987) Coexistence of neuropeptides in the sympathetic preganglionic neurons of the cat. Peptides 8:109–12. {aJCP}Google Scholar
Kummer, W. & Heym, Ch. (1986) Correlation of neuronal size and peptide immunoreactivity in the guinea pig trigeminal ganglion. Cell and Tissue Research 245:657–65. {aJCP}CrossRefGoogle ScholarPubMed
Kuntz, A. (1953) The autonomic nervous system, 4th ed. Lea & Febiger. {arJCP, JHH}Google Scholar
Kuo, D. C, Yang, G. C. H., Yamasaki, D. S. & Krauthamer, G. M. (1982) A wide field electron microscopic analysis of the fiber constituents of the major splanchnic nerve in cats. Journal of Comparative Neurology 210:4958. {SH, WLN}Google Scholar
Langley, J. N. (1900) The sympathetic and other related systems of nerves. In: Textbook of Physiology, vol. 2, ed. Schafer, E. A.. Y. J. Pentland. {rJCP}Google Scholar
(1903) The autonomic nervous system. Brain 26:126. {arJCP, DLF, JHH, FL}Google Scholar
(1921) The autonomic nervous system, Part 1. W. Heffer & Sons. {arJCP, PLRA, BTE, GJ, SK, FL, WLN, JS}Google Scholar
(1922) The nerve fiber constitution of peripheral nerves and of nerve roots. Journal of Physiology 56:382–96. {aJCP}Google Scholar
La Valley, A. L., & Ho, R. H. (1983) Substance P, somatostatin, and methionine enkephalin immunoreactive elements in the spinal cord of the domestic fowl, Gallus domesticus. Journal of Comparative Neurology 213:406–13. {aJCP}Google Scholar
Lawes, I. N. C. (1989) The central connections of the area postrema define the paraventricular system involved in antinoxious behaviors. In: Nausea and vomiting, ed. Harding, R. K., Stewart, D. & Kucharczyck, J.. CRC Press. {PLRA}Google Scholar
Lawson, S. N. (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: A statistical analysis of cell numbers and size. Journal of Neurocytology 8:275–94. {aJCP}Google Scholar
(1987a) Immunocytochemically defined populations of dorsal root ganglion neurons remaining in the rat after neonatal capsaicin. In: Effects of injury on trigeminal and spinal somatosensory systems, ed. L. M. Pubols & B. Sessle. Alan R. Liss. {GJ}Google Scholar
(1987b) The morphological consequences of neonatal treatment with capsaicin on primary afferent neurones in adult rats. Ada Physiologica Hungarica 69:315–21. {SL}Google Scholar
Lawson, S. N., & Biscoe, T. J. (1979) Development of mouse dorsal root ganglia: An autoradiographi c and quantitative study. Journal of Neurocytology 8:265–74. {aJCP, SL}Google Scholar
Lawson, S. N., & Harper, A. A. (1984) Neonatal capsaicin is not a specific neurotoxin for sensory C-fibres or small dark cells of rat dorsal root ganglia. In: Antidromic vasodilatation and neurogenic inflammation, ed. Chahl, L. A., Szolcsanyi, J. & Lembeck, F.. Akademiai Kiado. {CAM}Google Scholar
Lawson, S. N., Harper, A. A., Harper, E. I., Garson, J. A. & Anderton, B. H. (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of ra t sensory neurones. Journal of Comparative Neurology 228:263–72. {aJCP, JSD, SL}Google Scholar
Lawson, S. N., & Waddell, P. J. (1985) The antibody RT-97 distinguishes between cell bodies with myelinated and unmyelinated peripheral processes in the rat. Journal of Physiology 371:59P. {SL}Google Scholar
Le Douarin, N. M. (1982) The neural crest. Cambridge University Press. {aJCP}Google Scholar
Lembeck, F. (1983) Sir Thomas Lewis’ nocifensor system, histamine and substance P-containing primary afferent nerves. Trends in Neuroscience 6:106–08. {GJ}CrossRefGoogle Scholar
(1985) Substance P and sensory neurons. In: Substance P metabolism and biological actions, ed. Jordan, C. C. & Oehme, P.. Taylor & Francis. {aJCP}Google Scholar
(1987) A network of defense. In: Substance P and the neurokinins, ed. Henry, J. L., Couture, R., Cuello, A. C., Pelletier, G., Quirion, R. & Regoli, D.. Springer-Verlag. {arJCP, FL, WLN, PO, JS, VGZ}Google Scholar
(1988) The 1988 Ulf von Euler Lecture: Substance P: From extract to excitement. Ada Physiologica Scandinavica 133:435–54. {FL}Google Scholar
(1989) Pharmacology of afferent neurons. Naunyn-Schmiedebergs Archives of Pharmacology. {FL}Google Scholar
Levi-Montalcini, R. (1987) The nerve growth factor: Thirty-five years later. EMBO Journal 6:1145–54. {aJCP}Google Scholar
Levi-Montalcini, R. & Hamburger, V. (1951) Selective growth-stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. Journal of Experimental Zoology 116:321—62. {aJCP}Google Scholar
Lichtman, M. A. (1981) The ultrastructure of the hemopoientic environment of the marrow: A review. Experimental Hematology 9:391410. {rJCP, DLF}Google Scholar
Lieberman, A. R. (1976) Sensory ganglia. In: The peripheral nerve, ed. Landon, D. N.. Chapman and Hall. {aJCP}Google Scholar
Light, A. R., & Perl, E. R. (1979) Spinal terminatio n of functionally identified primary afferent neurons with slowly conducting myelinated fibers. Journal of Comparative Neurology 186:133–50. {LM}CrossRefGoogle Scholar
Lindberg, S. & Mercke, U. (1985) Substance P antagonists and mucociliary activity in rabbit. Naunyn-Schmiedebergs Archives of Pharmacology 329:376–81. {aJCP}Google Scholar
Ling, E. A., Wong, W. C, Yick, T. Y. & Leong, S. K. (1986) Ultrastructural changes in the dorsal motor nucleus of monkey following bilateral cervical vagotomy. Journal of Neurocytology 15:115. {WLN}Google Scholar
Lloyd, D. P. C. (1943) Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. Journal of Neurophysiology 6:293315. {aJCP}Google Scholar
Lorenz, K. J. (1958) The evolution of behavior. Scientific American 199:6782. {rJCP}Google Scholar
Lowenstein, W. (1956) Modulation of cutaneous mechanoreceptors by sympathetic stimulation. Journal of Physiology 132:4060. {DLF}Google Scholar
Lundberg, J. M., Hokfelt, T., Anggard, A., Terenius, L., Elde, R., Markey, K., Goldstein, M. & Kimmel, J. (1982) Organizational principles in the peripheral nervous system: Subdivision by coexisting peptides (somatostatin-, avian pancreatic polypeptide-, and vasoactive intestina l polypeptide-like immunoreactive materials). Proceedings of the National Academy of Sciences of the United States of America 79:1303–07. {aJCP}Google Scholar
Lundberg, J. M., Hokfelt, T., Nilsson, G., Terenius, L., Rehfeld, J., Elde, R. & Said, S. (1978) Peptide neurons in the vagus, splanchnic, and sciatic nerves. Ada Physiological Scandinavica 1104:499501. {aJCP}Google Scholar
Lundberg, J. M., Saria, A., Theordorsson-Nordheim, E., Brodin, E., Hua, X., Martling, C.-R.Gamse, R. & Hokfelt, T. (1985) Multiple tachykinins in capsaicin-sensitive afferents: Occurrence, release, and biological effects with special reference to irritation of the airways. In: Tachykinin antagonists, ed. Hakanson, R. & Sundler, F.. Elsevier. {aJCP}Google Scholar
Lundblad, L., Saria, A., Lundberg, J. M. & Anggard, A. (1983) Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin-sensitive trigeminal neurons. Ada Oto-laryngologica (Stockholm) 96:479–84. {aJCP}Google Scholar
Lynn, B. & Carpenter, S. E. (1982) Primary afferent units from th e hairy skin of the rat hind limb. Brain Research 238:2943. {GJ}Google Scholar
MacLean, D. B., Lewis, S. F. & Wheeler, F. B. (1988) Substance P content n i cultured neonatal rat vagal sensory neurons: The effect of nerve growth factor. Brain Research 457:5362. {JSD, SR}Google Scholar
Maggi, C. A., Santicioli, P., Geppetti, P., Parlani, M., Astolfi, M., Del Bianco, E., Patacchini, R., Giuliani, S. & Meli, A. (1989a) The effect of calcium-free medium and nifedipine on the releas e of substance P-like immunoreactivity and contractions induced by capsaicin in the isolated guinea pig and rat urinary bladder. General Pharmacology 29:445–56. {CAM}CrossRefGoogle Scholar
Maggi, C. A., Santicioli, P., Geppetti, P., Parlani, M., Astolfi, M., Pradelles, P., Patacchini, R. & Meli, A. (1988) The antagonism by Ruthenium Red of the actions of capsaicin on the peripheral terminals of sensory neurons: Further studies. European Journal of Pharmacology 154:110. {CAM}Google Scholar
Maggi, C. A., Lippe, I. Th., Giuliani, S., Abelli, L., Somma, V., Geppetti, P., Jancso, G., Santicioli, P. & Meli, A. (1989b) Topical versus systemic capsaicin desensitization: Specific and unspecific effects as indicated by modification of reflex micturition in rats. Neuroscience 31:745–56. {CAM}Google Scholar
Maggi, C. A., & Meli, A. (1986) The role of neuropeptides in the regulation of the micturition reflex. Journal of Autonomic Pharmacology 6:133–62. {aJCP}Google Scholar
(1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. General Pharmacology 19:143. {rJCP, GJ, CAM, JS}Google Scholar
Malliani, A. (1982) Cardiovascular sympathetic afferents. Reviews of Physiology, Biochemistry, and Pharmacology 94:1174. {aJCP}Google Scholar
Malliani, A., Recordati, G. & Schwartz, P. J. (1973) Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. Journal of Physiology (London) 229:457–69. {aJCP}Google Scholar
Marler, P. R., & Hamilton, W. J. III (1966) Mechanisms of animal behavior. John Wiley & Sons. {rJCP, VGZ}Google ScholarPubMed
Marsh, S. J., Stansfeld, CC. E., Brown, D. A., Davey, R. & McCarthy, D. (1987) The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23:275–89. {JSD}Google Scholar
Matthews, M. R., Connaughton, M. & Cuello, A. C. (1987) Ultrastructure and distribution of substance P-immunoreactive sensory collaterals in the guinea pig prevertebral sympathetic ganglia. Journal of Comparative Neurology 258:2851. {aJCP, WLN}Google Scholar
Matthews, M. R., & Cuello, A. C. (1982) Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proceedings of the National Academy of Sciences 79:1668–72. {GJ}Google Scholar
Maxwell, D. J., & Rethelyi, M. (1987) Ultrastructure and synaptic connections of cutaneous afferent fibers in the spinal cord. Trends in Neurosciences 10:117–23. {aJCP}Google Scholar
Mayr, E. (1982) The growth of biological thought. Harvard University Press. {arJCP}Google Scholar
McCarthy, P. W., & Lawson, S. N. (1989) Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience 28:745–53. {rJCP, SL}Google Scholar
Mei, N. (1978) Vagal glucoreceptors in the small intestine of the cat. Journal of Physiology 282:485506. {DPY}Google Scholar
(1985) Intestinal chemosensitivity. Physiological Reviews 65:211–37. {aJCP}Google Scholar
Melone, J. (1986) Vagal receptors sensitive to lipids in the small intestine of the cat. Journal of the Autonomic Nervous System 17:231–41. {DPY}Google Scholar
Melzack, R. & Wall, P. D. (1965) Pain mechanisms: A new theory. Science 150:971–79. {rJCP}Google Scholar
Mendell, L. M. (1966) Physiological properties of unmyelinated fiber projection to the spinal cord. Experimental Neurology 16:316–22. {LM}Google Scholar
Mendell, L. M., & Wall, P. D. (1965) Response of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 206:4979–97. {LM}Google Scholar
Mense, S. (1986) Slowly conducting afferent fibers from deep tissues: Neurobiological properties and central nervous actions. Progress in Sensory Physiology 6:139219. {WLN}Google Scholar
Mitchell, G. A. G. (1953) Anatomy of the autonomic nervous system. E. & S. Livingstone. {aJCP}Google Scholar
Molander, C, Ygge, J. & Dalsgaard, C.-J. (1987) Substanc e P-, somatostaitin-, and calcitonin gene-related peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labelled cutaneous, muscular and visceral primary sensory neurones in the rat. Neuroscience Letters 74:3742. {SL}Google Scholar
Moncrieff, R. W. (1967) The chemical senses. Leonard Hill. {aJCP}Google Scholar
Morgan, C, de Groat, W. C. & Nadelhaft, I. (1986) The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons tha t send their axons into the hypogastric nerve of the cat. Journal of Comparative Neurology 243:2340. {aJCP}Google Scholar
Mountcastle, V. B. (1961) Some functional properties of the somatic afferent system. In: Sensory communication, ed. Rosenblith, W. A.. M.I.T. Press and John Wiley. {aJCP}Google Scholar
(1980) Medical physiology, 14 ed., ed. Mountcastle, V. B.. CV Mosby. {JHH}Google Scholar
Nagy, J. I. (1982) Capsaicin: A chemical probe for sensory neuron mechanisms. In: Handbook of Psychopharmacology, vol. 15, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. {GJ}Google Scholar
Nagy, J. I., Iversen, L. L., Goedert, M., Chapman, D. & Hunt, S. P. (1983) Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat. Journal of Neuroscience 3:399406. {rJCP}Google Scholar
Narayanan, C. H., & Narayanan, Y. (1980) Neural crest and placodal contributions in the development of th e glossopharyngeal-vagal complex in the chick. Anatomical Record 196:7182. {aJCP}Google Scholar
Nauta, W. J. H., & Fertag, M. (1986) Fundamental Neuroanatomy. W. K, Freeman. {DLF}Google Scholar
Ness, T. & Gebhart, G. F. (1988) Colorectal distension as a noxious visceral stimulus: Physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Research 450:153–69. {WLN}Google Scholar
Neuhuber, W. L., & Sandoz, P. A. (1986) Vagal primary afferent terminals in the dorsal motor nucleus of the rat: Are they making monosynaptic contacts on pregaglionic efferent neurons? Neuroscience Letters 69:126–30. {WLN}Google Scholar
Neuhuber, W. L., Sandoz, P. A. & Fryscak, T. (1986) The central projections of primary afferent neurons of greater splanchnic and intercostal nerves in the rat. Anatomy and Embryology 174:123–44. {WLN}Google Scholar
New, H. V., & Mudge, A. W. (1986) Distribution and ontogeny of SP, CGRP, and VIP in chick sensory and sympathetic ganglia. Developmental Biology 116:337–46. {aJCP}Google Scholar
Newgreen, D. F., & Jones, R. D. (1975) Differentiation in vitro of sympathetic cells from chick embryo sensory ganglia. Journal of Embryology and Experimental Morphology 33:4356. {aJCP}Google Scholar
Nieber, K. & Oehme, P. (1987) Effect of substance P (SP) and the N-terminal SP-analogue SP(1–4) on the pre- and post synaptic transmitter release in rat adrenal gland slices. Biomedica Biochimica Ada 46:103–09. {PO}Google Scholar
Nishi, S., Soeda, H. & Koketsu, K. (1965) Journal of Cellular and Comparative Physiology 66:1932. {AN}Google Scholar
Norgren, R. (1976) Taste pathways to hypothalamus and amygdala. Journal of Comparative Neurology 166:1730. {SH}Google Scholar
(1985) Taste and th e autonomic nervous system. Chemical Senses 10:143–61. {aJCP}Google Scholar
Norgren, R. & Leonard, C. M. (1973) Ascending central gustatory pathways. Journal of Comparative Neurology 150:217–38. {SH}Google Scholar
Nosaka, S. (1986) Electrophysiologic identification of preganglionic neurons in the rat dorsal motor nucleus and analysis of vagus afferent projections. Experimental Neurology 91:366–81. {WLN}Google Scholar
Nozdrachev, A. D. (1983) Physiology of vegetative nervous system. Meditzina, Leningrad. {VGZ}Google Scholar
Obal, F. Jr., Jancso, G., Hajos, M. & Obal, F. (1987) Differences in the mechanisms of the thermoregulatory impairment induced by capsaicin in newborn and adult rats. Ada Physiologica Hungarica 69:437–45. {GJ}Google Scholar
Gehme, P., Hecht, K., Piesche, L., Hilse, H., Morgenstern, E. & Poppei, M. (1980) Substance P as a modulator of physiological and pathological processes. In: Neuropeptides and neural transmission, ed. Marsan, C. A. & Traczyk, W. Z.. Raven Press. {PO}Google Scholar
Gehme, P., Hilse, BL, Morgenstern, E. & Gores, E. (1980a) Substance P: Does it produce analgesia or hyperanalgesia? Science 208:305–07. {PO}Google Scholar
Omlin, F. X., Matthieu, J.-M., Philippe, E., Roch, J.-M. & Droz, B. (1984) Expression of myelin-associated glycoprotein of by small neurons of the dorsal root ganglion of chickens. Science 227:1359–60. {aJCP}Google Scholar
Otsuka, M. & Konishi, S. (1983) Substance P: The first peptide neurotransmitter? Trends in Neurosciences 6:317–20. {aJCP}Google Scholar
Otsuka, M., Konishi, S., Yanagisawa, M., Tsunoo, A. & Akagi, H. (1982) Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia. In: Substance P in the nervous system, ed. Porter, R. & O’Connor, M.. Pitman. {GJ}Google Scholar
Paintal, A. S. (1972) Cardiovascular receptors. In: Handbook of sensory physiology, vol. 3/1: Enteroceptors, ed. Neil, E.. Springer. {JS}Google Scholar
Panula, P., Hadjiconstantinou, M., Yang, H.-Y. & Costa, E. (1983) Immunohistochemical localization of bombesin/gastrin-releasing peptide and substance P in primary sensory neurons. Journal of Neuroscience 3:2021–29. {aJCP}Google Scholar
Parker, G. H. (1919) The elementary nervous system. J. B. Lippincott. {rJCP}Google Scholar
Patton, H. D. (1960) spinal properties of nerve trunks and tracts. In: Medical physiology and biophysics, ed. Ruch, T. C. & Fulton, J. F.. W. B. Saunders. {aJCP}Google Scholar
Payan, D. G., & Goetzl, E. J. (1987) Dual roles of substance P: Modulator of immune and neuroendocrine functions. Annals of New York Academy of Sciences 512:465–75. {DLF}Google Scholar
Payan, D. G., Levine, J. D. & Goetzl, E. J. (1984) Modulation of immunity and hypersensitivity by sensory neuropeptides. Journal of Immunology 132:1601–04. {GJ}Google Scholar
Payan, D. G., McGillis, J. P. & Goetzl, E. J. (1986) Neuroimmunology. Advances in Immunology 39:299323. {aJCP}Google Scholar
Peach, R. (1972) Fine structural features of light and dark in the trigeminal ganglion of the rat. Journal of Neurocytology 1:151–60. {aJCP}Google Scholar
Pearse, A. G. E. (1969) The cytochemistry and ultrastructure of polypeptide-hormone producing cell of the APUD series and the embryologic, physiologic and pathologic implications of th e concept. Journal of Histochemistry and Cytochemistry 17:303–13. {rJCP}Google Scholar
Pearson, J., Brandeis, L. & Cuello, C. (1982) Depletion of substance P-containing axons in substantia gelatinosa of patients with diminished pain sensitivity. Nature 295:6163. {aJCP}Google Scholar
Perl, E. R. (1984) Pain and nociception. In: Handbook of physiology, sect. 1, vol. 3, ed. I. Darian-Smith. American Physiological Society. {aJCP, LM}Google Scholar
Perrin, J., Crousillat, J. & Mei, N. (1981) Assessment of true splanchnic glucoreceptors in the jejuno-ileum of the cat. Brain Research Bulletin 7:625–28. {DPY}CrossRefGoogle ScholarPubMed
Pfaffman, D., Frank, M. & Norgren, R. (1976) Neural mechanisms and behavioral aspect of taste. Annual Review of Psychology 30:283325. {SH}Google Scholar
Philippe, E., Omlin, F. X. & Droz, B. (1986) Myelin-associated glycoprotein immunoreactive material: An early neuronal marker of dorsal root ganglion cells during chick development. Developmental Brain Research 27:275–77. {aJCP}Google Scholar
Pick, J. (1970) The autonomic nervous system: Morphological, comparative, clinical, and surgical aspects. J. B. Lippincott. {aJCP}Google Scholar
Pierce, J. P., & Roberts, W. J. (1981) Sympathetically induced changes in the response of guard hair and type II receptors in the cat. Journal of Physiology 314:411–28. {DLF}Google Scholar
Pieron, H. (1952) The sensations: Their functions, processes, and mechanisms. Yale University Press. {aJCP}Google Scholar
Prechtl, J. C., & Powley, T. L. (1987) A light and electron microscopic examination of the vagal hepatic branch of the rat. Anatomy and Embryology 176:115–26. {aJCP}Google Scholar
(1990) The fiber composition of the abdominal vagus of the rat. Anatomy and Embryology. 181:101–15. {arJCP}Google Scholar
Price, D. D. (1986) The question of how the dorsal horn encodes sensory information. In: Spinal afferent processing, ed. Yaksh, T. L.. Plenum Press. {aJCP}Google Scholar
Price, J. (1985) An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. Journal of Neuroscience 5:2051–59. {arJCP}Google Scholar
Procacci, P. & Maresca, M. (1987) Reflex sympathetic dystrophies and algodystrophies: Historical and pathogenic considerations. Pain 31:137–46. {aJCP}Google Scholar
Rambourg, A., Clermont, Y. & Beaudet, A. (1983) Ultrastructural features of six types of neurons in the dorsal root ganglia. Journal of Neurocytology 12:4766. {aJCP}Google Scholar
Ranieri, F., Mei, N. & Crousillat, J. (1973) Les afferences splanchniques provenant des mecanorecepteurs gastrointestinaux et peritoneaoux. Experimental Brain Research 16:276–90. {SH}Google Scholar
Raybould, H. E., & Tache, Y. (1988) Cholecystokinin inhabits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. American Journal of Physiology 255:G242–46. {DPY}Google Scholar
Reul, J. M. H. M., & deKloet, E. R. (1985) Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 117:505–11. {DLF}Google Scholar
Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. (1989) Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. Journal of Neuroscience 9:1985–96. {WLN}Google Scholar
Ritter, R. C, Kalivas, P. & Bernier, S. (1986) Cholecystokinin-induced suppression of locomotion is attenuated in capsaicin treated rats. Peptides 7:587–90. {DPY}Google Scholar
Ritter, R. C, Ritter, S., Ewart, W. R. & Wingate, D. L.(1989) Capsaicin attenuates hindbrain responses to circulating cholecystokinin. American Journal of Physiology. {SR}Google Scholar
Ritter, S. & Dinh, T. T. (1988) Capsaicin-induced neuronal degeneration: Silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat. Journal of Comparative Neurology 271:7990. {WBL, SR}Google Scholar
Roberts, W. J., & Levitt, G. R. (1982) Histochernical evidence for sympathetic innervation of hair recepto r afferents in cat skin. Journal of Comparative Neurology 210:204–09. {DLF}Google Scholar
Romer, A. S. (1970) The vertebrate body. W. B. Saunders. {arJCP}Google Scholar
(1972) The vertebrate as a dual animal: Somatic and visceral. Evolutionary Biology 6:121–56. {rJCP}Google Scholar
Rose, R. D., Koerber, H. R., Sedivec, M. J. & Mendell, L. M. (1986) Somal action potential duration differs in identified primary afferents. Neuroscience Letters 63:259–64. {LM}Google Scholar
Roske, I., Rathsack, R., Oehme, P. & Hilse, H. (1983) Influence of chronic immobilization on blood pressure and substance P-like immunoreactivity (SPLIR) in plasma and adrenals of wistar rats. Pharmazie 38:491. {PO}Google Scholar
Rowell, C. H. F. (1989) The taxonomy of invertebrate neurons: A plea for a new field. Trends in Neuroscience 12:169–74. {rJCP}Google Scholar
Rozsa, Z. & Jacobson, E. D. (1989) Capsaicin-sensitive nerves are involved in bile-oleate-induced intestinal hyperemia. American Journal of Physiology 256:G476–81. {DPY}Google Scholar
Rozsa, Z., Sharkey, K. A., Jancso, G. & Varro, V. (1986) Evidence for a role of capsaicin-sensitive mucosal afferent nerves in the regulation of mesenteric blood flow in the dog. Gastroenterology 90:906–10. {DPY}Google Scholar
Ruda, M. A., Bennett, G. J. & Dubner, R. (1986) Neurochemistry and neurocircuitry of the dorsal horn. Progress in Brain Research 66:219–68. {aJCP}Google Scholar
Sann, H., Pinter, E., Szolcsanyi, J. & Pierau, Fr.-K. (1988) Peptidergic afferents might contribute to the regulation of skin blood flow. Agents and Actions 23:1415. {JS}Google Scholar
Sant’Ambrogio, G. (1982) Information arising from the tracheobronchial tree of mammals. Physiological Reviews 62:531–69. {WLN}Google Scholar
Sato, A. & Schmidt, R. F. (1973) Somatosympathetic reflexes: Afferent fibers, central pathways, discharge characteristics. Physiological Review 53:916–47. {rJCP, WLN}Google Scholar
(1987) The modulation of visceral functions by somatic afferent activity. Japanese Journal of Physiology 37:117. {rJCP, GJ, JS}Google Scholar
Scharf, J.-H. (1958) Sensibel Ganglien. In: Handbook der microscopischen Anatomie des Menschen, vol. 4, part 3. Springer-Verlag. {aJCP}Google Scholar
Schmalbruch, H. (1987) The number of neurons in dorsal root ganglia L4-L6 of the rat. Anatomical Record 219:315–22. {rJCP}Google Scholar
Sharp, G. A., Shaw, G. & Weber, K. (1982) Immunoelectromicroscopical localization of the three neurofilament triplet proteins along neurofilaments of culture d dorsal root ganglion neurones. Experimental Cell Research 137:403–13. {aJCP}Google Scholar
Sheehan, D. (1936) Discovery of the autonomic nervous system. Archives of Neurology and Psychiatry 35:1081–1115. {aJCP}Google Scholar
Sherrington, C. S. (1906) The integrative action of the nervous system.Google Scholar
Scribner’s. {aJCP, VGZ}Google Scholar
Sibley, C. G., Ahlquist, J. E. & Monroe, B. L. Jr. (1988) A classification of the living birds of the world based on DNA-DNA hybridation studies. Auk 105:409–23. {rJCP}Google Scholar
Simmons, M. A. (1985) The complexity and diversity of synaptic transmission i n the prevertebral sympathetic ganglia. Progress in Neurobiology 24:43–93. {WLN}Google Scholar
Skofitsch, G., Zamir, N., Helke, C. J., Savitt, J. M. & Jacobowitz, D. M.Google Scholar
(1985) Corticotrophin-releasing factor-like immunoreactivity in sensory ganglia and capsaicin-sensitive neurons of the rat central nervous system: Colocalization with other neuropeptides. Peptides 6:307–18. {aJCP}Google Scholar
Smith, G. P., Jerome, C, Cushin, B. J., Eterno, R. & Simansky, K. J. (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in th e rat. Science 213:1036–37. {SH}Google Scholar
Smith, P. G., Slotkin, T. A. & Mills, E. (1982) Development of sympathetic ganglionic transmission in the neonatal rat: Pre- and postganglionic nerve response to asphyxia and 2-deoxyglucose. Neuroscience 7:501–07. {aJCP}Google Scholar
Sneath, P. H. A. (1962) The construction of taxonomic groups. In: Microhial classification. Twelfth symposium of the Society for General Microbiology. Cambridge University Press. {aJCP}Google Scholar
Sommer, E. W., Kazimierczak, J. & Droz, B. (1985) Neuronal subpopulations in the dorsal root ganglion of the mouse as characterized by combination of ultrastructural and cytochemical features. Brain Research 346:310–26. {arJCP}Google Scholar
Spitzer, N. C. (1979) Ion channels in development. Annual Review of Neuroscience 2:363–97. {LM}Google Scholar
Stace, C. L. (1980) Plant taxonomy and biosystematics. Edward Arnold. {rJCP}Google Scholar
Stansfield, C. E., & Wallis, D. I. (1985) Properties of visceral primary afferent neurons in the nodose ganglian of the rabbit. Journal of Neurophysiology 54:245–60. {DG}Google Scholar
Strauss, P. & Duda, P. (1982) Some electrophysiologic properties of neurons of the spinal ganglia of cats and their activation from peripheral receptors. Bratislava Lek Listy 78:526–36. {LM}Google Scholar
Sugiura, Y., Hosoya, Y., Ito, R. & Kohno, K. (1988) Ultrastructural features of functionally identified primary afferent neurons with C (unmyelinated)-fibers of the guinea pig: Classification of dorsal root ganglion cell type with reference to sensory modality. Journal of Comparative Neurology 276:265–78. {JS}Google Scholar
Swanson, S. W., & Sawchenko, P. E. (1983) Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience 6:269324. {DLF}Google Scholar
Szolcsanyi, J. (1982) Capsaicin-type pungent agents producing pyrexia. In: Handbook of experimental pharmacology, vol. 60, ed. Milton, A. S., Springer. {JS}Google Scholar
(1984) Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function. In: Antidromic vasodilation and neurogenic inflammation, ed. Chahl, L. A., Szolcsanyi, J. & Lembeck, F.. Akademiai Kiado. {JSD, GJ, JS}Google Scholar
(1987) Selective responsiveness of polymodal nociceptors of the rabbit ear to capsaicin, bradykinin, and ultra-violet irradiation. Journal of Physiology 388:923. {JS}Google Scholar
(1988) Antidromic vasodilatation and neurogenic inflammation. Agents and Actions 23:411. {JS}Google Scholar
(1989) Capsaicin irritation, and desensitization: Neurophysiological bases and future perspectives. In: Chemical irritation in the nose and mouth, ed. Green, B. & Mason, J. R.. May and Baker. {CAM}Google Scholar
Szolcsanyi, J., Anton, F., Reeh, P. W. & Handwerker, H. O. (1988) Selective excitation by capsaicin of mechano-heat sensitive nociceptors in the rat skin. Brain Research 446:262–68. {GJ, CAM, JS}Google Scholar
Szolcsanyi, J., Westerman, R. A., Magerl, W. & Pinter, E. (1988) Capsaicin-sensitive cutaneous sense organs: Nerve terminals with multiple functions. Regulatory Peptides 22:180. {JS}Google Scholar
Tennyson, V. M. (1965) Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. Journal of Comparative Neurology 124:267318. {aJCP}Google Scholar
Tervo, T., Ferenc, J., Huikuri, K. T., Toth, I. & Palkama, A. (1979) Fine structure of sensory nerves in the rat cornea: An experimental nerve degeneration study. Pain 6:5770. {aJCP}Google Scholar
Thuneberg, L. (1982) interstitial cells of Cajal: Intestinal pacemaker cells? Adv. Anat. Embryol. Cell Biol. 71:1130. {SK}Google Scholar
Traub, R. J., & Mendell, L. M. (1988) Spinal projection of individual small afferent fibers. Journal of Neurophysiology 59:4155. {LM}Google Scholar
Tuchscherer, M. M., & Seybold, V. S. (1985) Immunohistochemical studies of substance P, cholecystokinin-octapeptide, and somatostatin in dorsal root ganglia of the rat. Neuroscience 14:593605. {aJCP}Google Scholar
Wiesenfeld-Hallin, Z. (1986) Substance P and somatostatin modulate spinal cord excitability via physiologically different sensory pathways. Brain Research 372:172–75. {aJCP}Google Scholar
Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fischer, W., Bjorklund, A. & Gage, F. H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proceedings of the National Academy of Sciences (USA) 83:9231–35. {DLF}Google Scholar
Willis, T. (1664) The anatomy of the brain and nerves, trans. Pordage, ed. Feindel, W.. Reprinted 1965. McGill Universit y Press. {aJCP}Google Scholar
Willis, W. D. Jr. (1985) The pain system: The neural basis of nociceptive transmission in the mammalian nervous systems. Karger. {aJCP}Google Scholar
Windle, W. F. (1944) Genesis of somatic motor function in mammalian embryos: A synthesizing article. Physiological Zoology 17:247–60. {aJCP}Google Scholar
Winter, J. (1987) Characterization of capsaicin-sensitive neurones in adult rat dorsal root ganglion cultures. Neuroscience Letters 80:134–40. {CAM}Google Scholar
Wood, J. N., Winter, J., James, I. F., Rang, H., Yeats, J. & Bevan, S. (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. Neuroscience 8:3208–20. {CAM}Google Scholar
Xue, Z. G., Smith, J. & Le Douarin, N. M. (1985) Differentiation of catecholaminergic cells in cultures of embryonic avian sensory ganglia. Proceedings of the National Academy of Sciences of the United States of America 82:8800–4. {aJCP}Google Scholar
Yox, D. P., & Ritter, R. C. (1988) Capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. American Journal of Physiology 255:R569–74. {DPY}Google Scholar
Yox, D. P., Stokesberry, H. & Ritter, R. C. (1988) Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Society for Neuroscience Abstracts 14:1197. {DPY}Google Scholar
Yuan, C. S., & Barber, W. D. (in press) Brain stem evoked response to dorsal vagal gastric input from the proximal stomach. Journal of Autonomic Nervous System. {SH}Google Scholar
Zavarzin, A. A. (1950) Sotchinenia, Moscow, Leningrad, vol. 1. {VGZ}Google Scholar
Zimmer, L., Meliza, L. & Hsiao, S. (1976) Effects of cervical and subdiaphragmatic vagotomy on volemic and osmotic thirst. Physiology ir Behavior 16:665–70. {SH}Google Scholar