Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:18:38.107Z Has data issue: false hasContentIssue false

Heterogeneity and hypothesis testing in neuropsychiatric illness

Published online by Cambridge University Press:  26 June 2008

Curtis K. Deutsch
Affiliation:
Eunice Kennedy Shriver Center, University of Massachusetts Medical School (UMMS), Waltham, MA 02452, and Psychobiology Program, Harvard Medical School, Boston, MA 02115
Wesley W. Ludwig
Affiliation:
Neuroregeneration Laboratories, McLean Hospital, Mailman Research Center, Belmont, MA 02478
William J. McIlvane
Affiliation:
Eunice Kennedy Shriver Center, University of Massachusetts Medical School (UMMS) MRDDRC, Office of the Director, Waltham, MA 02452. [email protected]@[email protected]

Abstract

The confounding effects of heterogeneity in biological psychiatry and psychiatric genetics have been widely discussed in the literature. We suggest an approach in which heterogeneity may be put to use in hypothesis testing, and may find application in evaluation of the Crespi & Badcock (C&B) imprinting hypothesis. Here we consider three potential sources of etiologic subtypes for analysis.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brock, J., Brown, C., Boucher, J. & Rippon, G. (2002) The temporal binding deficit hypothesis of autism. Development and Psychopathology 142(2):209–24.CrossRefGoogle Scholar
Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., Miles, J. H., Wang, C. H., Stratton, R., Pilarski, R. & Eng, C. (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics 42:318–21.Google Scholar
Christian, S. L., Fantes, J. A., Mewborn, S. K., Huang, B. & Ledbetter, D. H. (1999) Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11–q13). Human Molecular Genetics 8(6):1025–37.CrossRefGoogle ScholarPubMed
Clifford, S., Dissanayake, C., Bui, Q. M., Huggins, R., Taylor, A. K. & Loesch, D. Z. (2007) Autism spectrum phenotype in male and females with fragile X full mutation and permutation. Journal of Autism and Developmental Disorders 37(4):738–47.Google Scholar
Deutsch, C. K. (1998) Emergent properties of brain development and function. In: Perspectives on fundamental processes in intellectual functioning: A survey of research approaches, vol. 2, ed. Soraci, S. A. & McIlvane, W. J., pp. 168–85. Ablex.Google Scholar
Fanous, A. H. & Kendler, K. S. (2005) Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: Searching for a framework. Molecular Psychiatry 10(1):613.Google Scholar
Fine, S. E, Weissman, A., Gerdes, M., Pinto-Martin, J., Zackai, E. H., McDonald-McGinn, D. M. & Emanuel, B. S. (2005) Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11.2 deletion syndrome. Journal of Autism and Developmental Disorders 35(4):461–70.Google Scholar
Geschwind, D. H. & Levitt, P. (2007) Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology 17(1):103–11.Google Scholar
Havlovicova, M., Novotna, D, Kocarek, E, Novotna, K, Bendova, S, Petrak, B, Hrdlicka, M. & Sedlacek, Z. (2007) A girl with Neurofibromatosis type 1, atypical autism and mosaic ring chromosome 17. American Journal of Medical Genetics 143A:7681.CrossRefGoogle ScholarPubMed
Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W. & Lee, C. (2004) Detection of large-scale variation in the human genome. Nature Genetics 36(9):949–51.Google Scholar
Johansson, M., Wentz, E., Fernell, E., Stromland, K., Miller, M. & Gillberg, C. (2001) Autistic spectrum disorders in Mobius sequence: A comprehensive study of 25 individuals. Developmental Medicine and Child Neurology 43(5):338–45.Google Scholar
Just, M. A., Cherkassky, V. L., Keller, T. A. & Minshew, N. J. (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 127:1811–21.Google Scholar
Lord, C., Leventhal, B. L. & Cook, E. H. Jr. (2001) Quantifying the phenotype in autism spectrum disorders. American Journal of Medical Genetics 105(1):3638.Google Scholar
Matthysse, S., Levy, D. L., Kinney, D., Deutsch, C., Lajonchere, C., Yurgelun-Todd, D., Woods, B. & Holzman, P. S (1992) Gene expression in mental illness: A navigation chart to future progress. Journal of Psychiatric Research 26(4):461–73.Google Scholar
McCaffery, P. & Deutsch, C. K. (2005) Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology 77:3856.Google Scholar
McClellan, J. M., Susser, E. & King, M. C. (2007) Schizophrenia: A common disease caused by multiple rare alleles. British Journal of Psychiatry 190:194–99.Google Scholar
Perry, G. H., Tchinda, J., McGrath, S. D., Zhang, J., Picker, S. R., Cáceres, A. M., Iafrate, A. J., Tyler-Smith, C., Scherer, S. W., Eichler, E. E., Stone, A. C. & Lee, C. (2006) Hotspots for copy number variation in chimpanzees and humans. Proceedings of the National Academy of Sciences USA 103(21):8006–11.CrossRefGoogle ScholarPubMed
Peters, S. U., Beaudet, A. L., Madduri, N. & Bacino, C. A. (2004) Autism in Angelman syndrome: Implications for autism research. Clinical Genetics 66(6):530–36.CrossRefGoogle ScholarPubMed
Rippon, G., Brock, J., Brown, C. & Boucher, J. (2007) Disordered connectivity in the autistic brain: Challenges for the “new psychophysiology.” International Journal of Psychophysiology 63(2):164–72.Google Scholar
Ropers, H. H. (2007) New perspectives for the elucidation of genetic disorders. American Journal of Human Genetics 81(2):199207.CrossRefGoogle ScholarPubMed
Rubenstein, J. L. & Merzenich, M. M. (2003) Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior 2:255–67.Google Scholar
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y. H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimäki, T., Ledbetter, D., Gregersen, P. K., Bregman, J., Sutcliffe, J. S., Jobanputra, V., Chung, W., Warburton, D., King, M. C., Skuse, D., Geschwind, D. H., Gilliam, T. C., Ye, K. & Wigler, M. (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–49.CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T. C., Trask, B., Patterson, N., Zetterberg, A. & Wigler, M. (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–28.Google Scholar
Smalley, S. L. (1998) Autism and tuberous sclerosis. Journal of Autism and Developmental Disorders 28(5):407–14.CrossRefGoogle ScholarPubMed
Spence, S. J., Cantor, R. M., Chung, L., Kim, S., Geschwind, D. H., Alarcón, M. (2006) Stratification based on language-related endophenotypes in autism: Attempt to replicate reported linkage. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 141(6):591–98.Google Scholar
Tierney, E., Nwokoro, N. A., Porter, F. D., Freund, L. S., Ghuman, J. K. & Kelley, R. (2001) Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. American Journal of Medical Genetics 98(2):191200.Google Scholar
Wassink, T. H., Brzustowicz, L. M., Bartlett, C. W., Szatmari, P. (2004) The search for autism disease genes. Mental Retardation and Developmental Disabilities Research Reviews 10(4):272–83.CrossRefGoogle ScholarPubMed