Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T16:52:39.926Z Has data issue: false hasContentIssue false

Analyzing vision at the complexity level

Published online by Cambridge University Press:  19 May 2011

John K. Tsotsos
Affiliation:
Department of Computer Science, University of Toronto and The Canadian Institute for Advanced Research, 10 King's College Rd., Toronto, Ontario, Canada M5S 1A4. Electronic mail: [email protected]

Abstract

The general problem of visual search can be shown to be computationally intractable in a formal, complexity-theoretic sense, yet visual search is extensively involved in everyday perception, and biological systems manage to perform it remarkably well. Complexity level analysis may resolve this contradiction. Visual search can be reshaped into tractability through approximations and by optimizing the resources devoted to visual processing. Architectural constraints can be derived using the minimum cost principle to rule out a large class of potential solutions. The evidence speaks strongly against bottom-up approaches to vision. In particular, the constraints suggest an attentional mechanism that exploits knowledge of the specific problem being solved. This analysis of visual search performance in terms of attentional influences on visual information processing and complexity satisfaction allows a large body of neurophysiological and psychological evidence to be tied together.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albano, J. E., Mishkin, M., Westbrook, L. E. & Wurtz, R. H. (1982) Visuomotor deficits following ablation of monkey superior colliculus. Journal of Neurophysiology 48:338–51. {RD}CrossRefGoogle ScholarPubMed
Allman, J., Miezin, F. & McGuinnis, E. (1985) Stimulus specific responses from beyond the classical receptive field: Neuropliysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. {aJKT}CrossRefGoogle ScholarPubMed
Anderson, C. & van Essen, D. (1987) Shifter circuits: A computational strategy for dynamic aspects of visual processing. Proceedings of the National Academy of Science USA 84:62976301. {aJKT}Google Scholar
Ballard, D. (1986) Cortical connections and parallel processing: Structure and function. Behavioral and Brain Sciences 9(1):67–90. {aJKT}CrossRefGoogle Scholar
(1989) Animate vision. Proceedings of the International Joint Conferences on Artificial Intelligence, Detroit. {aJKT}Google Scholar
Ballard, D. & Brown, C. (1982) Computer vision. Prentice-Hall. {rJKT}Google Scholar
Ballard, D., Hinton, G. & Sejnowski, T. (1983) Parallel visual computation. Nature 306(5938):2126. {aJKT}CrossRefGoogle ScholarPubMed
Barlow, H. (1986) Why have multiple cortical areas? Vision Research 26(1):8190. {aJKT}CrossRefGoogle ScholarPubMed
Barlow, H., Fitzhugh, R. & Kuffler, S. (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation. Journal of Physiology 137:338–54. {SWZ}CrossRefGoogle ScholarPubMed
Barrow, H. & Tenenbaum, J. M. (1978) Recovering intrinsic scene characteristics from images. In: Computer vision systems, ed. Hanson, A. & Riseman, E.. Academic Press. {aJKT}Google Scholar
Bellman, R. (1954) Some applications of the theory of dynamic programming: A review. Operations Research 2:275–88. {PRK, rJKT}Google Scholar
Bennett, B., Hoffman, D. & Prakash, C. (1989) Observer mechanics. Academic Press. {RE}Google Scholar
Biederman, I. (1988) Aspects and extensions of a theory of human image understanding. In: Computational processes in human vision, ed. Pylyshyn, Z.. Ablex Publishing Corp. {aJKT}Google Scholar
Broadbent, D. & Broadbent, M. (1978) From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception and Psychophysics 42(2):105–13. {aJKT}CrossRefGoogle Scholar
Bureck, C. & Yap, Y. (1990) Spatial-filter selection in large-scale spatial-interval discrimination. Vision Research 30(2):263–72. {rJKT}CrossRefGoogle Scholar
Burt, P. & Adelson, E. (1983) The Laplacian pyramid as a compact image code. IEEE Transactions on Communications 31:4:532–40. {aJKT}CrossRefGoogle Scholar
Cavanagh, P. (1987) Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity, and shape. Computer Vision, Graphics, and Image Processing 37:171–95. {PRK}CrossRefGoogle Scholar
Cave, K. R. & Wolfe, J. M. (in press) Modeling the role of parallel processing in visual search. Cognitive Psychology, {KRC, AH, JMW, rJKT}Google Scholar
Chen, L. (1982) Topological structure in visual perception. Science 218:699. {MM}CrossRefGoogle ScholarPubMed
(1989) Topological perception: A challenge to computational approaches to vision. In: Perspective in connectionism, ed. Pfeiffer, R.. Elsevier Science Publisher. {MM}Google Scholar
Chignell, M. H. & Krueger, L. E. (1984) Further evidence for priming in perceptual matching: Temporal, not spatial, separation enhances the fast-same effect. Perception & Psychophysics 36:257–65 {LEK}CrossRefGoogle Scholar
Church, A. (1936) An unsolvable problem of elementary number theory. American Journal of Mathematics 58:345–63. {aJKT}CrossRefGoogle Scholar
Cook, S. (1971) The complexity of theorem-proving procedures. Proceedings of the 3d Annual ACM Symposium on the Theory of Computing. New York. {aJKT}Google Scholar
Corbeil, J.-C. (1986) The Stoddart visual dictionary. Stoddart Publishing Co. {aJKT}Google Scholar
Cowey, A. (1979) Cortical maps and visual perception. Quarterly Journal of Experimental Psychology 31:117. {aJKT}CrossRefGoogle ScholarPubMed
Crick, F. & Asunama, C. (1986) Certain aspects of the anatomy and physiology of the cerebral cortex. In: Parallel distributed processing, ed. Rumelhart, D. & McClelland, J.. MIT Press. {aJKT}Google Scholar
Daniel, P. & Whitteridge, D. (1961) The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology 159:203–21. {aJKT}CrossRefGoogle ScholarPubMed
Dantzig, G. B. (1957) Discrete-variable extremum problems. Operations Research 5:266–77. {rJKT}CrossRefGoogle Scholar
Davis, L. (1989) Mapping classifier systems into neural networks. In: Advances in Neural Information Processing Systems I, ed. Touretzky, D. S.. Morgan Kaufmann. {GWS}Google Scholar
Desimone, R. (1990) Untitled abstract presented at Visual Search: Segmentation, Attention and Identification, January 19–21, 1990, Irvine, CA. {rJKT}Google Scholar
Desimone, R., Chein, S., Moran, J. & Ungerleider, L. (1985) Contour, color, and shape analysis beyond the striate cortex. Vision Research 25(3):441–52. {aJKT}CrossRefGoogle ScholarPubMed
Desimone, R., Moran, J. & Spitzer, H. (in press) Neural mechanisms of attention in extrastriate cortex of monkeys. In: Competition and cooperation in neural nets 2, ed. Arbib, M. A.. {SWZ}Google Scholar
Desimone, R. & Ungerleider, L. G. (1989) Neural mechanisms of visual processing monkeys. In: Handbook of Neuropsychology, vol. II., ed. Boiler, E. & Grafman, J.. Elsevier Press. {RD}Google Scholar
Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. (1989) Effects of deactivation of lateral pulvinar or superior colliculus on the ability to selectively attend to a visual stimulus. Society for Neuroscience Abstracts 15:162. {RD}Google Scholar
Dobkin, D., Lipton, R. & Reiss, S. (1979) Linear programming is log space hard for P. Information Processing Letters 8:9697. {rJKT}CrossRefGoogle Scholar
Dobson, V. & Rose, D. (1985) Models and metaphysics: The nature of explanation revisited. In: Models of the visual cortex, ed. Rose, D. & Dobson, V.. John Wiley & Sons. {aJKT}Google Scholar
Dowling, J. (1987) The retina. Belknap Press. {rJKT}Google Scholar
Downing, C. & Pinker, S. (1985) The spatial structure of visual attention. In: Attention and Performance XI, ed. Posner, M. & Marin, O.. Lawrence Erlbaum. {aJKT}Google Scholar
Duncan, J. (1980) The locus of interference in the perception of simultaneous stimuli. Psychological Review 87(3):272300. {aJKT}CrossRefGoogle ScholarPubMed
Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. {KRC}CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordon, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature detection in the visual cortex? Multiple electrode and correlation analysis in the cat. Biological Cybernetics 60:121–30. {RMS}CrossRefGoogle Scholar
Egeth, H., Virzi, R. & Garbart, H. (1984) Searching for conjunctively defined targets. Journal of Experimental Psychology: Human Perception and Performance 10(1):3239. {rJKT}Google ScholarPubMed
Eriksen, C. W., O’Hara, W. P. & Eriksen, B. A. (1982) Response competition effects in same-different judgments. Perception & Psychophysics 32:261–70. {LEK}CrossRefGoogle ScholarPubMed
Farah, M. J. (1985) Psychophysical evidence for a shared representational medium for mental images and percepts. Journal on Experimental Psychology: General 114:91103. {MM}CrossRefGoogle ScholarPubMed
Feldman, J. (1985) Connectionist models and their applications. Cognitive Science 9(1): 1169. {aJKT}Google Scholar
Feldman, J. & Ballard, D. (1982) Connectionist models and their properties. Cognitive Science 6:205–54. {aJKT}CrossRefGoogle Scholar
Finke, R. A. (1985) Theories relating mental imagery to perception. Psychological Bulletin 98:236–59. {MM}CrossRefGoogle ScholarPubMed
Fleet, D., Hallett, P. & Jepson, A. (1985) Spatio-temporal inseparability in early visual processing. Biological Cybernetics 52:153–64. {aJKT}CrossRefGoogle Scholar
Fleet, D. & Jepson, A. (1989) Hierarchical construction of orientation and velocity selective filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. II, 3:315–25. {aJKT}CrossRefGoogle Scholar
Fodor, J. A. (1985) Précis of The modularity of mind. Behavioral and Brain Sciences 8:142. {LEK}CrossRefGoogle Scholar
Funt, B. V. (1980) Problem solving with diagrammatic representations. Artificial Intelligence 13:201–30. {MM}CrossRefGoogle Scholar
Fuster, J. (1988) Attentional modulation of inferotemporal neuron responses to visual features. Proceedings of the Society of Neuroscience, Toronto. {aJKT}Google Scholar
Gamble, E. & Koch, C. (1987) The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236:1311—15. {RMS}CrossRefGoogle ScholarPubMed
Gardin, F. & Meltzer, B. (1989) The analogical representation of naive physics. Artificial Intelligence 38:139–59. {MM}CrossRefGoogle Scholar
Garey, M. & Johnson, D. (1979) Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman & Co. {arJKT, PRK}Google Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin. {LEK}Google Scholar
(1979) The ecological approach to visual perception. Houghton Mifflin. {LEK}Google Scholar
Gleitman, H. & Jonides, J. (1976) The cost of categorization in visual search: Incomplete processing of targets and field items. Perception & Psychophysics 20:(4):281–88. {aJKT}CrossRefGoogle Scholar
Goldberg, D. E. (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley. {GWS}Google Scholar
Goldman-Rakie, P. S. (1988) Changing concepts of cortical connectivity: Parallel distributed cortical networks. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. John Wiley & Sons. {GWS}Google Scholar
Gray, C. M. & Singer, W. (1989) Stimulus specific neuronal oscillations in orientation columns. Proceedings of the National Academy of Science 86:16981702. {RMS}CrossRefGoogle ScholarPubMed
Grimson, W. E. L. (1986) The combinatorics of local constraints in model-based recognition and localization from sparse data. Journal of the Association for Computing Machinery 33(4):658–86. {aJKT}CrossRefGoogle Scholar
Haenny, P., Maunsell, J. & Schiller, P. (1988) State dependent activity in monkey visual cortex II. Retinal and extraretinal factors in V4. Experimental Brain Research 69:245–59. {arJKT}CrossRefGoogle ScholarPubMed
Haenny, P. & Schiller, P. (1988) State dependent activity in money visual cortex I. Single cell activity in VI and V4 on visual tasks. Experimental Brain Research 69:225–44. {aJKT}CrossRefGoogle Scholar
Hartline, H. (1940) The receptive fields of optic nerve fibers. American Journal of Physiology 130:690–99. {aJKT}CrossRefGoogle Scholar
Hebb, D. (1949) The organization of behavior. John Wiley & Sons. {aJKT}Google Scholar
Hebb, D. O. (1958) Alice in Wonderland or psychology among the biological sciences. In: Biological and biochemical bases of behavior, ed. Harlow, H. F. & Woolsey, C. N.. University of Wisconsin Press. {AH}Google Scholar
Hinton, G. (1981) Shape representation in parallel systems. Proceedings of the International Joint Conference on Artificial Intelligence, Vancouver. {aJKT}Google Scholar
Hinton, G. E. (1989) Connectionist learning procedures. Artificial Intelligence 40:185234. {DGL}CrossRefGoogle Scholar
Hoffman, J., Nelson, B. & Houck, M. (1983) The role of attentional resources in automatic detection. Cognitive Psychology 51:379410. {aJKT}CrossRefGoogle Scholar
Hoffman, J. E. (1979) A two-stage model of visual search. Perception ir Psychophysics 25:319–27. {KRC}CrossRefGoogle ScholarPubMed
Holland, J. H. (1975) Adaptation in natural and artificial systems. University of Michigan Press. {GWS, rJKT}Google Scholar
Hopfield, J. J. & Tank, D. W. (1986) Computing with neural circuits: A model. Science 233:625–33. {EMS}CrossRefGoogle ScholarPubMed
Hubel, D. & Wiesel, T. (1977) Functional architecture of macaque visual cortex. Proceedings of the Royal Society of London B198:159. {aJKT}Google Scholar
Hummel, E. & Zucker, S. (1983) On the foundations of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 5:267–87. {aJKT}CrossRefGoogle ScholarPubMed
Jonides, J. & Gleitman, H. (1976) The benefit of categorization in visual search: Target location without identification. Perception & Psychophysics 20(4):289–98. {aJKT}CrossRefGoogle Scholar
Kaas, J. H. (1989) Why does the brain have so many visual areas? Journal of Cognitive Neuroscience 1(2):121–35. {aJKT}CrossRefGoogle ScholarPubMed
Kahneman, D. & Treisman, A. (1984) Changing views of attention and automaticity. In: Varieties of attention, ed. Parasurarnan, E. & Beatty, J.. Academic Press. {AT}Google Scholar
Kaufman, L., Okada, Y., Tripp, J. & Weinberg, H. (1984) Evoked neuromagnetic fields. In: Brain and information: Event-related potentials, ed. Karrer, R., Cohen, J., & Tueting, P.. Annals of the New York Academy of Sciences 425:722–42. {LEK}Google Scholar
Kertzman, C. & Robinson, D. L. (1988) Contributions of the superior colliculus of the monkey to visual spatial attention. Society for Neuroscience Abstracts 14:831. {ED}Google Scholar
Kosslyn, S. M. (1980) Image and mind. Harvard University Press. {MM}Google Scholar
Krueger, L. E. (1978) A theory of perceptual matching. Psychological Review 85:278304. {LEK}CrossRefGoogle ScholarPubMed
(1989) Cognitive impenetrability of perception. Behavioral and Brain Sciences 12(4):769–70. {LEK}CrossRefGoogle Scholar
Krueger, L. E. & Chignell, M. H. (1985) Same-different judgments under high speed stress: Missing-feature principle predominates in early processing. Perception & Psychophysics 38:183–93. {LEK}CrossRefGoogle ScholarPubMed
Kuffler, S. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16:3768. {aJKT}CrossRefGoogle ScholarPubMed
Larkin, J. H. & Simon, H. A. (1987) Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11:6599. {MM}CrossRefGoogle Scholar
Lawler, E. (1976) Combinatorial optimization: Networks and matroids. Holt, Rinehart & Winston. {rJKT}Google Scholar
Liu, L., Zhao, N. & Bian, Z. (1989) Can early stage vision detect topology? Proceedings of the International Joint Conference on Artificial Intelligence 11:1591–95. {MM}Google Scholar
Llinas, R. & Yarom, Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. Journal of Physiology 376:163–82. {RMS}CrossRefGoogle ScholarPubMed
Lowe, D. G. (1985) Perceptual organization and visual recognition. Kluwer Academic Publishers. {DGL}CrossRefGoogle Scholar
(1987) Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31:355–95. {DGL, rJKT}CrossRefGoogle Scholar
(1990) Visual recognition as probabilistic inference from spatial relations. In: AI and the eye, ed. Blake, A. & Troscianko, T.. Wiley. {DGL}Google Scholar
Mackworth, A. & Freuder, E. (1985) The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence 25:6574. {aJKT}CrossRefGoogle Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman. {arJKT, LEK, RMS}Google Scholar
Maunsell, J. (1989) Personal communication, June. {rJKT}Google Scholar
Maunsell, J. & Newsome, W. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10:363401. {arJKT}CrossRefGoogle ScholarPubMed
Maunsell, J., Sclar, G. & Nealey, T. (1988) Task-specific signals in area V4 of monkey visual cortex. Proceedings of the Society of Neuroscience, Toronto. {aJKT}Google Scholar
Maunsell, J. & Van Essen, D. (1987) Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266:535–55. {rJKT}CrossRefGoogle ScholarPubMed
Maxwell, N. (1985) Methodological problems of neuroscience. In: Models of the visual cortex, ed. Rose, D. & Dobson, V.. John Wiley & Sons. {aJKT}Google Scholar
McLeod, P., Driver, J. & Crisp, J. (1988) Visual search for conjunctions of movements and form is parallel. Nature 332:154–55. {JMW}CrossRefGoogle ScholarPubMed
Miller, J. P., Rail, W. & Rinzel, J. (1985) Synaptic amplification by active membrane in dendritic spines. Brain Research 325: 325–30. {RMS}CrossRefGoogle ScholarPubMed
Minsky, M. & Papert, S. (1969) Perceptrons. MIT Press. {MM}Google Scholar
Mohnhaupt, M. & Neumann, B. (in press) Understanding object motion: Recognition, learning and spatio-temporal reasoning. Journal of Robotics and Autonomous Systems. North Holland. {MM}Google Scholar
Moore, E. F. (1956) Gedanken-experiments on sequential machines. In: Automata studies, ed. Shannon, C. E. & McCarthy, J.. Princeton University Press. {WRU}Google Scholar
Moran, J. & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84. {arJKT, RD, SWZ}CrossRefGoogle ScholarPubMed
Motter, B. (1988) Responses of visual cortical neurons during a focal attentive task. Proceedings of the Society of Neuroscience, Toronto. {aJKT}Google Scholar
Mountcastle, V. (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology 20:408–34. {aJKT}CrossRefGoogle ScholarPubMed
Mountcastle, V., Motter, B., Steinmetz, M. & Sestokas, A. (1987) Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the Macaque monkey. Journal of Neuroscience 7(7):2239–55. {aJKT}CrossRefGoogle ScholarPubMed
Nakayama, K. & Silverman, G. H. (1986) Serial and parallel processing of visual feature conjunctions. Nature 320:264–65. {JMW}CrossRefGoogle ScholarPubMed
Neisser, U. (1967) Cognitive psychology. Appleton-Century-Crofts. {aJKT, KRC, J-OE, RMS}Google Scholar
Okada, Y. C, Tanenbaum, R., Williamsonn, S. J. & Kaufman, L. (1984) Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. Experimental Brain Research 56:197205. {LEK}CrossRefGoogle ScholarPubMed
Parasuraman, R. & Davies, D., eds. (1984) Varieties of attention. Academic Press. {aJKT}Google Scholar
Pashler, H. (1987) Detecting conjunctions of color and form: Reassessing the serial search hypothesis. Perception and Psychophysics 41:191201. {AH}CrossRefGoogle ScholarPubMed
Pippenger, N. (1978) Complexity theory. Scientific American 238(6): 114–24. {aJKT}CrossRefGoogle Scholar
Poggio, T. (1982) Visual algorithms. AI Memo 683. MIT Press. {aJKT}Google Scholar
Posner, J. I., Choate, L. S., Rafal, R. K. & Vaughn, J. (1985) Inhibition of return: Neural mechanisms and function. Cognitive Neuropsychology 2:211–28. {RD}CrossRefGoogle Scholar
Pour-El, M. B. & Richards, I. (1981) The wave equation with computable initial data such that its unique solution is not computable. Advances in Mathematics 39:215–39. {BWD}CrossRefGoogle Scholar
(1982) Noncomputability in models of physical phenomena. International Journal of Theoretical Physics 21:553–55. {BWD}CrossRefGoogle Scholar
Proctor, R. W. (1981) A unified theory for matching-task phenomena. Psychological Review 88:291326. {LEK}CrossRefGoogle Scholar
Proctor, R. W. & Rao, K. V. (1983) Evidence that the same-different disparity in letter matching is not attributable to response bias. Perception & Psychophysics 34:7276. {LEK}CrossRefGoogle Scholar
Pylyshyn, Z. (1984) Computation and cognition. MIT Press/Bradford Books. {aJKT}Google Scholar
(1987) The robot’s dilemma: The frame problem in AI. Ablex. {RE}Google Scholar
(1989) The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition 32:6597. {RE}CrossRefGoogle Scholar
Pylyshyn, Z. & Biederman, I. (1988) Computational processes in human vision: An interdisciplinary perspective. Ablex. {RE}Google Scholar
Pylyshyn, Z. & Storm, R. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. {RE}CrossRefGoogle ScholarPubMed
Quinlan, P. & Humphreys, G. (1987) Visual search for targets defined by combinations of color, shape and size: An examination of the task constraints on feature and conjunction searches. Perception and Psychophysics 41(5):455–72. {rJKT}CrossRefGoogle ScholarPubMed
Rabbitt, P. (1978) Sorting, categorization and visual search. In: Handbook of perception: Perceptual processing, vol. IX, ed. Carterette, E. & Friedman, M.. Academic Press. {aJKT}Google Scholar
Ramachandran, V. S. (1985) Guest editorial: The neurobiology of perception. Perception 14:114. {RMS}CrossRefGoogle Scholar
Rensinck, R. (1989) Personal communication, University of British Columbia, September. {rJKT}Google Scholar
Rosch, E. (1978) Principles of categorization. In: Cognition and categorization, ed. Rosch, E. & Lloyd, B. B.. Erlbaum. {MM}Google Scholar
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M. & Boyes-Bream, P. (1976) Basic objects in natural categories. Cognitive Psychology 8:382439. {MM}CrossRefGoogle Scholar
Rosenfeld, A. (1962) Automatic recognition of basic terrain types from aerial photographs. Photogrammetric Engineering 28:115–32. {aJKT}Google Scholar
Rosenkrantz, D. & Stearns, R. (1983) NP-complete problems. In: The encyclopedia of computer science and engineering, 2nd ed., ed. Ealston, A. & Reilly, E.. Van Nostrand Reinhold Co. {rJKT}Google Scholar
Rubin, J. & Kanwisher, N. (1985) Topological perception: Holes in an experiment. Perception and Psychophysics 37. {MM}CrossRefGoogle ScholarPubMed
Rumelhart, D. & McClelland, J. (1986a) PDF models and general issues in cognitive science. In: Parallel distributed processing, ed. Rumelhart, D. & McClelland, J.. MIT Press. {aJKT}CrossRefGoogle Scholar
(1986b)Parallel distributed processing. MIT Press. {aJKT}Google Scholar
Runeson, S. (1977) On the possibility of “smart” perceptual mechanisms. Scandinavian Journal of Psychology 18:172–79. {LEK, rJKT}CrossRefGoogle ScholarPubMed
Sagi, D. & Julesz, B. (1986) “Where” and “What” in vision. Science 228:1217–19. {aJKT}CrossRefGoogle Scholar
Schwartz, E. (1977) Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics 25:181–94. {aJKT}CrossRefGoogle ScholarPubMed
Sclar, G., Lennie, P. & DePriest, D. (1989) Contrast adaptation in striate cortex of macaque. Vision Research 29:747–55. {SWZ}CrossRefGoogle ScholarPubMed
Searle, J. (1990) Is the brain’s mind a computer program? Scientific American 262(1):2631. {rJKT}CrossRefGoogle ScholarPubMed
Selman, B. (1989) Personal communication, Department of Computer Science, University of Toronto, January. {rJKT}Google Scholar
Shepard, G. M. & Brayton, R. K. (1987) Logic operations are properties of computer simulated interactions between excitable dendritic spines. Neuroscience 23:151–66. {RMS}CrossRefGoogle Scholar
Siegel, R. M. (in press) Non-linear dynamical system theory and primary visual cortical processing. Physica D. {RMS}Google Scholar
Simon, H. (1962) The architecture of complexity. Proceedings of the American Philosophical Society 106:467–82. {aJKT, GWS}Google Scholar
Skarda, C. A. & Freeman, W. J. (1987) How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10:161–96. {RMS}CrossRefGoogle Scholar
Sloman, A. (1975). Afterthoughts on analogical representations. In: Proceedings on Theoretical Issues in Natural Language Processing 164–68. {MM}Google Scholar
Spitzer, H., Desimone, R. & Moran, T. (1988) Both behavioral and neuronal performance are improved by increased attention. Proceedings of the Society for Neuroscience, Toronto. {aJKT}Google Scholar
(1988) Increased attention enhances both behavioral and neuronal performance. Science 240:338–40. {RD}CrossRefGoogle Scholar
Sporns, O., Gaily, J. A., Reeke, G. N. & Edelman, G. M. (1989) Reentrant signaling among simulated neuronal groups lead to coherency in their oscillatory activity. Proceedings of the National Academy of Science 86:7265–69. {RMS}CrossRefGoogle Scholar
Steels, L. (1988) Steps towards common sense. Proceedings ECAI 88:4954. {MM}Google Scholar
Stensaas, S., Eddington, D. & Dobelle, W. (1974) The topography and variability of the primary visual cortex in man. Journal of Neurosurgery 40:747–55. {aJKT}CrossRefGoogle ScholarPubMed
Stockmeyer, L. & Chandra, A. (1979) Intrinsically difficult problems. Scientific American, May. {aJKT}CrossRefGoogle Scholar
Stone, J., Dreher, B. & Leventhal, A. (1979) Hierarchical and parallel mechanisms in the organization of the visual cortex. Brain Research Reviews 1:345–94. {aJKT}CrossRefGoogle Scholar
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag assignment problem for neural networks. Behavioral and Brain Sciences 12:381433. {GWS}CrossRefGoogle Scholar
Treisman, A. (1982) Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance 8:194214. {AH}Google ScholarPubMed
(1985) Preattentive processing in vision. Computer Vision, Graphics and Image Processing 31:156–77. {arJKT, AH, AT}CrossRefGoogle Scholar
1986) Features and objects in visual processing. Scientific American 255:1446–125. {KRC, AT}Google Scholar
(1988) Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology 40A(2):201–37. {aJKT, KRC, AH, AT}Google Scholar
Treisman, A. & Gelade, G. (1980) A feature-integration theory of attention. Cognitive Science 12:99136. {aJKT, KRC}Google ScholarPubMed
Treisman, A. & Gormican, S. (1988) Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95(1); 1548. {aJKT, AT}CrossRefGoogle ScholarPubMed
Treisman, A. & Sato, S. (1990) Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16. {arJKT, AT, JMW}Google Scholar
Treisman, A. & Schmidt, H. (1982) Illusory conjunctions in the perception of objects. Cognitive Psychology 14:107–41. {aJKT}CrossRefGoogle ScholarPubMed
Treisman, A. & Souther, J. (1985) Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General 114:285310. {aJKT}CrossRefGoogle ScholarPubMed
Tsotsos, J. (1987a) Representational axes and temporal cooperative processes. In: Vision, brain and cooperative computation, ed. Arbib, M. & Hansen, A.. MIT Press/Bradford Books. {aJKT}Google Scholar
(1987b) Image understanding. In: The encyclopedia of artificial intelligence, ed. Shapiro, S.. John Wiley & Sons. {aJKT}Google Scholar
(1987c)Analyzing vision at the complexity level: Constraints on an architecture, an explanation for visual search performance, and computational justification for attentive processes, RBCV-TR-87–20, Department of Computer Science, University of Toronto, September. {arJKT}Google Scholar
(1988) A “complexity level” analysis of immediate vision. International Journal of Computer Vision 1(4):303–20. {arJKT}CrossRefGoogle Scholar
(1989) The complexity of perceptual search tasks. Proceedings of the International Joint Conference on Artificial Intelligence, Detroit. {aJKT}Google Scholar
Turing, A. (1937) On computable numbers with an application to the Entscheidungs problem. Proceedings of the London Mathematical Society 2(43):230–65. {aJKT}CrossRefGoogle Scholar
Uhr, L. (1972) Layered “recognition cone” networks that preprocess, classify and describe. IEEE Transactions on Computers C-21:758–68. {aJKT}CrossRefGoogle Scholar
(1980) Psychological motivation and underlying concepts. In: Structured computer vision, ed. Tanimoto, S. & Klinger, A.. Academic Press. {aJKT}Google Scholar
Ullman, S. (1984) Visual routines. Cognition 18:97159. {RE, J-OE}CrossRefGoogle ScholarPubMed
(1989) Aligning pictorial descriptions: An approach to object recognition. Cognition 32:193254. {MM}CrossRefGoogle Scholar
Ungerleider, L. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D., Goodale, M. & Mansfield, R.. MIT Press. {aJKT, RD}Google Scholar
Van Doom, A., van de Grind, W. & Koenderink, J., ed. (1984) Limits in perception. VNU Science Press. {aJKT}Google Scholar
Van Essen, D. & Anderson, C. (in press) Information processing strategies and pathways in the primate retina and visual cortex. In: Introduction to Neural and Electronic Networks, ed. Zornetzer, S., Davis, J. & Lau, C.. Academic Press. {arJKT}Google Scholar
Van Essen, D. & Maunsell, J. (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neuroscience 6:370–75. {aJKT}CrossRefGoogle Scholar
Vergis, A., Steiglitz, K. & Dickinson, B. (1986) The complexity of analog computation. Mathematics and Computers in Simulation 28:91113. {BWD}CrossRefGoogle Scholar
Von Bekesy, G. (1956) Current status of theories of hearing. Science 123:779–83. {LEK}CrossRefGoogle ScholarPubMed
Watson, A. & Ahumada, A. (1987) An orthogonal oriented quandrature hexagonal image pyramid. NASA Technical Memorandum 100054. {aJKT}Google Scholar
Wise, S. & Desimone, R. (1988) Behavioral neurophysiology: Insights into seeing and grasping. Science 242:736–41. {RD}CrossRefGoogle ScholarPubMed
Wolfe, J., Cave, K. & Franzel, S. (1989) Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance 15:419–33. {arJKT, KRC, AH, AT, JMW}Google Scholar
Wolfe, J., Cave, K. & Yu, K. (1988) Direction attention to complex objects. Proceedings of the Society for Neuroscience, Toronto. {aJKT}Google Scholar
Zeki, S. (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology 277:273–90. {aJKT}CrossRefGoogle ScholarPubMed
Zucker, S. (1985) Does connectionism suffice? Behavioral and Brain Sciences 8(2):301–2. {aJKT}CrossRefGoogle Scholar
Zucker, S. W. (1983) Cooperative grouping and early orientation selection. In: Physical and biological processing of images, ed. Sleigh, A.. Springer. {RMS}Google Scholar