Article contents
NEIGHBOURING PREDICTION FOR MORTALITY
Published online by Cambridge University Press: 12 May 2021
Abstract
We propose a new neighbouring prediction model for mortality forecasting. For each mortality rate at age x in year t, mx,t, we construct an image of neighbourhood mortality data around mx,t, that is, Ꜫmx,t (x1, x2, s), which includes mortality information for ages in [x-x1, x+x2], lagging k years (1 ≤ k ≤ s). Combined with the deep learning model – convolutional neural network, this framework is able to capture the intricate nonlinear structure in the mortality data: the neighbourhood effect, which can go beyond the directions of period, age, and cohort as in classic mortality models. By performing an extensive empirical analysis on all the 41 countries and regions in the Human Mortality Database, we find that the proposed models achieve superior forecasting performance. This framework can be further enhanced to capture the patterns and interactions between multiple populations.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of The International Actuarial Association
Footnotes
We thank Mario V. Wüthrich (editor) and three anonymous referees for helpful comments. Wang acknowledges the support of MOST (107-2410-H-110-010-MY3). Zhang thanks the research funding support from the Nanyang Technological University Start-up Grant (04INS000509C300) and the Ministry of Education Academic Research Fund Tier 1 Grant (RG55/20). Zhu also thanks the research funding support from the Nanyang Technological University Start-Up Grant (04INS000384C300), Singapore Ministry of Education Academic Research Fund Tier 1 (RG143/19), and the Society of Actuaries Education Institution Grant.
References
- 21
- Cited by