Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T00:23:12.076Z Has data issue: false hasContentIssue false

A Loglinear Lagrangian Poisson Model

Published online by Cambridge University Press:  29 August 2014

Peter ter Berg*
Affiliation:
SFB Verzekeringen, Amsterdam, Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Maximum likelihood estimation is derived for the Lagrangian Poisson distribution for a simple and a loglinear model and illustrated with real data.

Type
Short Contribution
Copyright
Copyright © International Actuarial Association 1996

References

REFERENCES

Bailey, R. A. and Simon, L.J. (1960) Two studies in automobile insurance ratemaking. ASTIN Bulletin 1, 192217.CrossRefGoogle Scholar
Bichsel, F. (1964) Erfahrungs-Tarifierung in der Motorfahrzeughaftpflicht-Versicherung. Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 64, 119129.Google Scholar
Consul, P.C. (1989) Generalized Poisson Distributions. Marcel Dekker, New York.Google Scholar
Consul, P.C. and Shenton, L. R. (1972) Use of Lagrange expansion for generating discrete generalized probability distributions. SIAM Journal of Applied Mathematics 23, 239248.CrossRefGoogle Scholar
Cox, D. R. and Miller, H. D. (1965) The Theory of Stochastic Processes. Chapman & Hal, London.Google Scholar
Goovaerts, M. and Kaas, R. (1991) Evaluating compound generalized Poisson distributions recursively. ASTIN Bulletin 21, 193198.CrossRefGoogle Scholar
McMillan, B. and Riordan, J. (1957) A moving single server problem. Annals of Mathematical Statistics 28, 471478.CrossRefGoogle Scholar
ter Berg, P. (1980) On the loglinear Poisson and Gamma model. ASTIN Bulletin 11, 3540.CrossRefGoogle Scholar