Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:35:02.415Z Has data issue: false hasContentIssue false

Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance

Published online by Cambridge University Press:  17 April 2015

Jean-Philippe Boucher
Affiliation:
Institut des Sciences Actuarielles, Université Catholique de Louvain, 6 rue des Wallons, B-1348 Louvain-la-Neuve, Belgium
Michel Denuit
Affiliation:
Institut des Sciences Actuarielles, Université Catholique de Louvain, 6 rue des Wallons, B-1348 Louvain-la-Neuve, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper examines the validity of some stylized statements that can be found in the actuarial literature about random effects models. Specifically, the actual meaning of the estimated parameters and the nature of the residual heterogeneity are discussed. A numerical illustration performed on a Belgian motor third party liability portfolio supports this discussion.

Type
Articles
Copyright
Copyright © ASTIN Bulletin 2006

References

Allison, P.D. and Waterman, R. (2002) Fixed-effects Negative Binomial regression models. Sociological Methodology, 32, 247265.CrossRefGoogle Scholar
Andersen, E.B. (1970) Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society B, 32, 283301.Google Scholar
Boucher, J.-P., Denuit, M. and Guillen, M. (2006) Risk classification for claim counts: A comparative analysis of various zero-inflated Mixed Poisson and Hurdle models. Working Paper, Institut des Sciences Actuarielles, Université Catholique de Louvain.Google Scholar
Cameron, A.C. and Trivedi, P.K. (1998) Regression Analysis of Count Data. Cambridge University Press.CrossRefGoogle Scholar
Dean, C., Lawless, J.F. and Willmot, G.E. (1989) A mixed Poisson-Inverse Gaussian regression model. Canadian Journal of Statistics, 17, 171182.CrossRefGoogle Scholar
Denuit, M. and Lang, S. (2004) Nonlife ratemaking with Bayesian GAM’s. Insurance: Mathematics and Economics, 35, 627647.Google Scholar
Denuit, M., Pitrebois, S. and Walhin, J.-F. (2003) Tarification automobile sur données de panel. Bulletin of the Swiss Association of Actuaries, 5181.Google Scholar
Dionne, G. and Vanasse, C. (1989) A generalization of automobile insurance rating models: The Negative Binomial distribution with regression component. ASTIN Bulletin, 19, 199212.CrossRefGoogle Scholar
Dionne, G. and Vanasse, C. (1992) Automobile insurance ratemaking in the presence of asymmetrical information. Journal of Applied Econometrics, 7, 149165.CrossRefGoogle Scholar
Gourieroux, C. and Jasiak, J. (2004) Heterogeneous INAR(1) model with application to car insurance. Insurance: Mathematics and Economics, 34, 177192.Google Scholar
Hausman, J.A., Hall, B.H. and Griliches, Z. (1984) Econometric models for count data with application to the Patents-R&D Relationship. Econometrica, 52, 909938.CrossRefGoogle Scholar
Hinde, J. (1982) Compound Poisson regression models. In Gilchrist, R., ed., GLIM 82: Proceeding of the International Conference on Generalised Linear Models, New York, Springer-Verlag.Google Scholar
Hsiao, C. (2003) Analysis of Panel Data. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Liang, K.Y. and Zeger, S.L. Longitutinal data analysis using generalized linear models. Biometrika, 73, 1322.CrossRefGoogle Scholar
McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models. Chapman and Hall, London.CrossRefGoogle Scholar
Mundlak, Y. (1978) On the pooling of time series and cross section data. Econometrica, 46, 6985.CrossRefGoogle Scholar
Palmgren, J. (1981) The Fisher information matrix for log-linear models arguing condition-nally in observed explanatory variables. Biometrika, 68, 563566.Google Scholar
Pinquet, J. (2000) Experience rating through heterogeneous models. In Handbook of Insurance, edited by Dionne., G. Kluwer Academic Publishers.Google Scholar
Shoukri, M.M., Asyali, M.H., VanDorp, R. and Kelton, D. (2004) The Poisson Inverse Gaussian regression model in the analysis of clustered counts data. Journal of Data Science, 2, 1732.CrossRefGoogle Scholar
Tremblay, L. (1992) Using the Poisson Inverse Gaussian in bonus-malus systems. ASTIN Bulletin, 22, 97106.CrossRefGoogle Scholar
Willmot, G. (1987) The Poisson-Inverse Gaussian distribution as an alternative to the Negative Binomial. Scandinavian Actuarial Journal, 113127.CrossRefGoogle Scholar
Winkelmann, R. (2003) Econometric Analysis of Count Data. Springer, New York.CrossRefGoogle Scholar
Yip, K.C.H. and Yau, K.K.W. (2005) On modeling claim frequency data in general insurance with extra zeros. Insurance: Mathematics and Economics, 36, 153163.Google Scholar