Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T03:30:06.009Z Has data issue: false hasContentIssue false

Experience Rating Schemes for Fleets of Vehicles*

Published online by Cambridge University Press:  29 August 2014

Denise Desjardins
Affiliation:
Centre de Recherche sur les Transports, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal (Québec), Canada, H3C 3J7, email: [email protected]
Georges Dionne
Affiliation:
Ecole des Hautes Etudes Commerciales, Chaire de Gestion des Risques, 3000, chemin de la Côte-Sainte-Catherine, Montréal (Québec), Canada, H3T 2A7, email: [email protected]
Jean Pinquet
Affiliation:
U.F.R. de Sciences Economiques, Université de Paris X, 200, avenue de la République, 92001 Nanterre Cedex, France, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper proposes bonus-malus systems for fleets of vehicles, by using the individual characteristics of both the vehicles and the carriers. Bonus-malus coefficients are computed from the history of claims or from the history of safety offences of the carriers and the drivers. The empirical results are derived from a data set obtained from the Société de l'Assurance Automobile du Québec, the public insurer for bodily injuries and the regulator of road safety.

Type
Workshop
Copyright
Copyright © International Actuarial Association 2001

Footnotes

*

The paper benefited from useful comments of two anonymous referees. This research was funded by the programme de recherche universitaire en sécurité routière of the Ministère des Transports du Québec (MTQ) and the Société de l'Assurance Automobile du Québec. The authors also acknowledge financial support from the Fédération Françhise des Sociétés d'Assurances (FFSA) and the FCAR in Quebec. They remain responsible for the errors, if any. A first version was presented at two research meetings of the FFSA and at the Risk Theory Seminar of the American Risk and Insurance Association.

References

1.Boyer, M. and Dionne, G. (1987) Description and analysis of the quebec automobile insurance plan. Canadian Public Policy 13, 181195.CrossRefGoogle Scholar
2.Bühlmann, H. (1967) Experience rating and credibility. ASTIN Bulletin 4, 199207.CrossRefGoogle Scholar
3.Devlin, R.A. (1992) Liability versus no-fault automobile insurance regimes: An analysis of the experience in Quebec. Contributions to Insurance Economics (Editor: Dionne, Georges), Kluwer Academic Publishers. Huebner International Series on Risk, Insurance, and Economic Security, Boston.Google Scholar
4.Dionne, G., and Vanasse, C. (1989) A generalization of automobile insurance rating models: The negative binomial distribution with a regression component. ASTIN Bulletin 19, 199212.CrossRefGoogle Scholar
5.Dionne, G., and Vanasse, C. (1997a) Une evaluation empirique de la nouvelle tarification de l'assurance automobile au Québec. Actualité Economique 73, 4780.CrossRefGoogle Scholar
6.Dionne, G., Gagné, R., Gagnon, F. and Vanasse, C. (1997b) Debt, moral hazard and airline safety: An empirical evidence. Journal of Econometrics 79, 379402 (Special Issue on Duration, Transition and Count Data Models. Editors: Christian Gouriéroux and Thierry Magnac).CrossRefGoogle Scholar
7.Dionne, G., Desjardins, D. and Pinquet, J. (1999) L'évaluation du risque d'accident des transporteurs en fonction de leur secteur d'activité, de la taille de leur flotte et de leur dossier d'infractions. Research Report 99-28, Centre de Recherches sur les Transports, Université de Montréal.Google Scholar
8.Dionne, G., Desjardins, D. and Pinquet, J. (2000a) Optimal insurance for fleets of vehicles under asymmetric information. Mimeo, Risk Management Chair, HEC Montreal.Google Scholar
9.Dionne, G., Maurice, M. and Pinquet, J. (2000b) The role of memory and saving in longterm contracting with moral hazard: An empirical evidence in automobile insurance. Mimeo, Risk Management Chair, HEC-Montreal.Google Scholar
10.Gouriéroux, G., Monfort, A. and Trognon, A. (1984) Pseudo likelihood methods: Applications to Poisson models. Econometrica 52, 701720.CrossRefGoogle Scholar
11.Hausman, J.A., Hall, B.H. and Griliches, Z. (1984) Econometric models for count data with an application to the patents – R&D relationship. Econometrica 52, 909938.CrossRefGoogle Scholar
12.Jewell, W.S. (1975) The use of collateral data in credibility theory: A hierarchical model. Giornale dell'Instituto degli Attuari 38, 116 (quoted in “Advanced Risk Theory,” F. Etienne de Vylder, Edition de l'Université de Bruxelles et Swiss Association of Actuaries, (1996)).Google Scholar
13.Lemaire, J. (1985) Automobile Insurance: Actuarial Models. Huebner International Series on Risk, Insurance and Economie Security, Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
14.Liang, K.Y., and Zeger, S.L. (1986) Longitudinal data analysis using generalized linear models. Biometrika 73, 1322.CrossRefGoogle Scholar
15.Marie-Jeanne, P. (1994) Problèmes spécifiques des flottes automobiles. Proceedings of the ISUP conference “Cours Avancé sur l'Assurance Automobile”.Google Scholar
16.Pinquet, J. (1997) Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin 27, No. 1, 3357.CrossRefGoogle Scholar
17.Pinquet, J. (1998) Designing optimal bonus-malus systems from different types of claims. ASTIN Bulletin 28, No. 2, 205220.CrossRefGoogle Scholar
18.Pinquet, J. (2000) Experience rating through heterogeneous models. Handbook of Insurance, chapter 14 (Editor: Dionne, Georges), Kluwer Academic Publishers. Huebner International Series on Risk, Insurance and Economic Security, 459500.CrossRefGoogle Scholar
19.Teugels, J.L. and Sundt, B. (1991). “A stop-loss experience rating scheme for fleets of cars”. Insurance: Mathematics and Economics, North-Holland, 173179.Google Scholar