Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-12T02:53:26.424Z Has data issue: false hasContentIssue false

Distributions in Life Insurance

Published online by Cambridge University Press:  29 August 2014

Jan Dhaene*
Affiliation:
Instituut voor Actuariële Wetenschappen, K.U. Leuven, Belgium
*
Instituut voor Actuariële Wetenschappen, K.U. Leuven, Dekenstraat 2, B-3000 Leuven, Belgium.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In most textbooks and papers that deal with the stochastic theory of life contingencies, the stochastic approach is restricted to the computation of expectations and higher order moments. For a wide class of insurances on a single life, we derive the distribution and the probability density function of the benefit and the loss functions. Both the continuous and the discrete case are considered.

Type
Articles
Copyright
Copyright © International Actuarial Association 1990

References

REFERENCES

Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1987) Actuarial Mathematics. Society of Actuaries, Itacsa, IL.Google Scholar
De Pril, N. (1989) The distributions of Actuarial functions. Bulletin of the Swiss Association of Actuaries, 173183.Google Scholar
Gerber, H.U. (1986) Lebensversicherungsmathematik. Vereinigung schweizerischer Versicherungsmathematiker, Zürich.CrossRefGoogle Scholar
Papoulis, A. (1962) The Fourier Integral and its applications. Mc Graw-Hill, New York.Google Scholar
Pollard, A. H. and Pollard, J.H. (1969) A stochastic approach to actuarial functions. Journal of the Institute of Actuaries, 79113.CrossRefGoogle Scholar
Wolthuis, H. and Van Hoek, I. (1984) Stochastic models for life contingencies. Insurance: Mathematics and Economics 5, 217254.Google Scholar