Published online by Cambridge University Press: 29 August 2014
On peut penser que la dimension des sinistres est la résultante d'un très grand nombre de causes indépendantes à effets positifs.
Soient
les variables aléatoires indépendantes qui représentent les facteurs élémentaires exerçant leur action dans l'ordre indiqué par les indices.
Si Xν est l'ampleur du sinistre dû aux facteurs ξ1, ξ2, …., ξν nous pouvons supposer que l'augmentation causée par ξν+1 soit proportionelle à ξν+1 et à une certaine fonction, g(Xν) de la dimension Xν.
C'est à dire, nous supposons qu'il y ait les relations:
Si chaque facteur n'apporte qu'un faible contribut à l'augmentation du sinistre, nous pouvons alors poser approximativement aussi:
Comme X varie de Xo à Xn (et que X = Xn désigne la dimension extrème du sinistre) le second membre de la (2) décrit une variable aléatoire, fonction de X.
Puisque par hypothèse ξ1,, ξ2, …., ξn sont des variables aléatoires indépendante, si n est suffisament grand, d'après le théorème de la limite des probabilités il s'insuit que la variable aléatoire au second membre de la (2), est, à la limite, distribuée suivant la loi normale. Si l'on pose g(t) = t − c, la variable aléatoire normale qui décrit la dimension du sinistre pourra être posée dans la forme In(X − c).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.