Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:03:16.372Z Has data issue: false hasContentIssue false

The Asymptotic Efficiency of Largest Claims Reinsurance Treaties

Published online by Cambridge University Press:  29 August 2014

Erhard Kremer*
Affiliation:
Hamburg & Löhnberg, FRG
*
Verein zur Förderung der Angewandten Mathematischen Statistik und Risikotheorie Research & Relax Area, Wallstr. 15, 6293 Löhnberg 1, FRG.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reinsurance treaties defined as generalizations of the classical largest claims reinsurance covers are investigated with respect to the associated risk, defined as the variance of the insurer's retaining total claims amount. Instead of the unhandy variance corresponding handier asymptotic expressions are used. With these an asymptotic efficiency measure for comparing two such reinsurance covers is defined. It is shown that with respect to asymptotic efficiency the excess-of-loss treaty is better than the classical largest claims treaty. Furthermore the problem of giving optimal wheights to the ordered claims of a generalized largest claims cover is discussed.

Type
Articles
Copyright
Copyright © International Actuarial Association 1990

References

REFERENCES

Ammeter, H. (1964) The rating of “largest claim” reinsurance covers. Quaterly letter from the allgemeene reinsurance companies, 79109.Google Scholar
Beard, R., Pentikänen, P. and Pesonen, E. (1969) Risk Theory. Chapman & Hall, Londen.Google Scholar
Berliner, B. (1972) Correlations between excess-of-loss reinsurance covers and reinsurance of the n largest claims. ASTIN Bulletin, 260275.Google Scholar
Borch, K. (1960), An attempt to determine the optimum amount of stop loss reinsurance. Transactions of the XVI international congress of actuaries, 597610.Google Scholar
Gerber, H. U. (1980) An introduction to mathematical risk theory. S. S. Huebner foundation, Philadelphia.Google Scholar
Kahn, P. (1961) Some remarks on a recent paper by Borch. ASTIN Bulletin, 265272.Google Scholar
Krabs, W. (1975) Optimierung und Approximation. Teubner Studientexte, Stuttgart.Google Scholar
Kremer, E. (1982), Rating of largest claims and ECOMOR reinsurance treaties for large portfolios. ASTIN Bulletin, 4756.Google Scholar
Kremer, E. (1983), Rating of nonproportional reinsurance treaties based on ordered claims. A lecture given at the NATO-study institute in Leuven. Published in 1984 in the NATO-ASI series: Premium Calculation in Insurance, edited by Goovaerts, M., De Vylder, F. and Haezendonck, J.Kremer, E. (1984) An asymptotic formula for the net premium of some reinsurance treaties. Scandinavian Actuarial Journal, 1122.Google Scholar
Kremer, E. (1986a) Recursive calculation of the net premium of largest claims reinsurance covers. ASTIN Bulletin, 101108.Google Scholar
Kremer, E. (1986b) Höhere Versicherungsmathematik. Verein zur Förderung der angewandten mathematischen Statistik und Risikotheorie. Hamburg.Google Scholar
Kremer, E. (1988a) A general bound for the net premium of largest claims reinsurance treaties. ASTIN Bulletin, 6978.Google Scholar
Kremer, E. (1988b) Net premiums of nonproportional reinsurance covers in nonlife insurance. Verein zur Förderung der angewandten mathematischen Statistik und Risikotheorie. Hamburg.Google Scholar
Künzi, H.P., Tzschach, H.G. and Zehnder, C. A. (1967) Mathematische Optimierung. Teubner Studienbücher, Stuttgart.Google Scholar
Lemaire, J. (1973) Sur la détermination d'un contract optimal de réassurance. ASTIN Bulletin, 165180.Google Scholar
Ohlin, J. (1969) On a class of measures of dispersion with application to optimal reinsurance. ASTIN Bulletin, 249266.Google Scholar
Pesonen, E. (1967) On optimal properties of the stop loss reinsurance. ASTIN Bulletin, 175176.Google Scholar
Pesonen, M.I. (1984) Optimal reinsurances. Scandinavian Actuarial Journal, 6590.CrossRefGoogle Scholar
Vajda, S. (1962) Minimum variance reinsurance. ASTIN Bulletin, 257260.Google Scholar
Verbeek, H.G. (1966) On optimal reinsurance. ASTIN Bulletin, 2938.Google Scholar