Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T20:55:37.360Z Has data issue: false hasContentIssue false

Allowance for the Age of Claims in Bonus-Malus Systems*

Published online by Cambridge University Press:  29 August 2014

Jean Pinquet
Affiliation:
U.F.R. de Sciences Economiques, Université de Paris X, 200, avenue de la République, 92001 Nanterre Cedex, France, e-mail: [email protected]
Montserrat Guillén
Affiliation:
Departament d'Econometria, Estadistica i Economia Espanyola, Universitat de Barcelona, Diagonal, 690, 08034 Barcelona, Spain, e-mail: [email protected]
Catalina Bolancé
Affiliation:
Departament d'Econometria, Estadistica i Economia Espanyola, Universität de Barcelona, Diagonal, 690, 08034 Barcelona, Spain, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the paper is to use the age of claims in the prediction of risks. A dynamic random effects model on longitudinal count data is presented, and estimated on the portfolio of a major Spanish insurance company. The estimated autocorrelation coefficients of stationary random effects are decreasing. A consequence is that the predictive ability of a claim decreases with the lag between the period of risk prediction and the period of occurrence. There is a wide gap between the long term properties of actuarial and real-world experience rating schemes. This gap can be partly filled if the age of claims is taken into account in the actuarial model.

Type
Workshop
Copyright
Copyright © International Actuarial Association 2001

Footnotes

*

Pinquet acknowledges financial support from the Fédération Française des Sociétés d'Assurance. Guillén and Bolancé thank the Spanish CICYT grant SEC99-0693. We thank a referee for his comments.

References

1.Besson, J.L. and Partrat, C. (1992) Trend et systèmes de bonus-malus. ASTIN Bulletin 22, 1132.CrossRefGoogle Scholar
2.Bühlmann, H. (1967) Experience rating and credibility. ASTIN Bulletin 4, 199207.CrossRefGoogle Scholar
3.Dionne, G. and Vanasse, C. (1989) A generalization of automobile insurance rating models: the negative binomial distribution with a regression component. ASTIN Bulletin 19, 199212.CrossRefGoogle Scholar
4.Gerber, H. and Jones, D. (1975) Credibility formulas of the updating type. Transactions of the Society of Actuaries 27, 3152.Google Scholar
5.Henriet, D. and Rochet, J.C. (1986) La logique des systèmes bonus-malus en assurance automobile. Annales d'Economie et de Statistiques, 133152.Google Scholar
6.Lemaire, J. (1985) Automobile Insurance: Actuarial Models. Kluwer Academic Publishers.CrossRefGoogle Scholar
7.Lemaire, J. (1995) Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publishers.CrossRefGoogle Scholar
8.Pinquet, J., Guillen, M. and Bolance, C. (2000) Long-range contagion in automobile insurance data: Estimation and implications for experience rating. Working paper 2000-43, http://thema.u-parisl0.fr.Google Scholar
9.Sundt, B. (1988) Credibility estimators with geometric weights. Insurance: Mathematics and Economics 7, 113122.Google Scholar
10.Zeger, L.S. (1988) A regression model for time series of counts. Biometrika 74, 721729.Google Scholar