Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:48:23.676Z Has data issue: false hasContentIssue false

STATISTICAL APPROACH FOR OPEN BONUS MALUS

Published online by Cambridge University Press:  18 October 2013

Gracinda Rita Guerreiro*
Affiliation:
Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal & CMA/FCT/UNL
João Tiago Mexia
Affiliation:
Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal & CMA/FCT/UNL E-Mail: [email protected]
Maria de Fátima Miguens
Affiliation:
Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal & CMA/FCT/UNL E-Mail: [email protected]

Abstract

In this paper, following an open portfolio approach, we show how to estimate a Bonus-malus system evolution.

Considering a model for the number of new annual policies, we obtain ML estimators, asymptotic distributions and confidence regions for the expected number of new policies entering the portfolio in each year, as well as for the expected number and proportion of insureds in each bonus class, by year of enrollment. Confidence regions for the distribution of policyholders result in confidence regions for optimal bonus scales.

Our treatment is illustrated by an example with numerical results.

Type
Research Article
Copyright
Copyright © ASTIN Bulletin 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borgan, Ø., Hoem, J. and Norberg, R. (1981) A non asymptotic criterion for the evaluation of automobile bonus system. Scandinavian Actuarial Journal, 3, 165178.Google Scholar
Centeno, L. and Andrade e Silva, J. (2001) Bonus systems in open portfolio. Insurance: Mathematics and Economics, 28, 341350.Google Scholar
Centeno, L. and Silva, J. (2002) Optimal bonus scales under path-dependent bonus rules. Scandinavian Actuarial Journal, 2, 129136.CrossRefGoogle Scholar
Cramér, H. (1999) Mathematical Methods of Statistics. Princeton Landmarks in Mathematics. Princeton, NJ: Princeton University Press. Reprint of the 1946 original.Google Scholar
Denuit, M. and Dhaene, J. (2001) Bonus-malus scales using exponential loss functions. Blatter der DGVFM, 25 (1), 1327.CrossRefGoogle Scholar
Feller, W. (1966) An Introduction to Probability Theory and it's Applications, 2nd ed. India: John Wiley and Sons, Inc.Google Scholar
Gilde, V. and Sundt, B. (1989) On bonus systems with credibility scales. Scandinavian Actuarial Journal, 2, 1322.CrossRefGoogle Scholar
Guerreiro, G. and Mexia, J. (2004) An alternative approach to bonus malus. Discussiones Mathematicae, Probability and Statistics, 24 (2), 197213.CrossRefGoogle Scholar
Guerreiro, G. and Mexia, J. (2008) Stochastic vortices in periodically reclassified populations. Discussiones Mathematicae, Probability and Statistics, 28 (2), 209227.CrossRefGoogle Scholar
Guerreiro, G., Mexia, J. and Miguens, M. (2010) A model for open populations subject to periodical re-classifications. Journal of Statistical Theory and Practice, 4 (2), 303321.CrossRefGoogle Scholar
Guerreiro, G., Mexia, J. and Miguens, M. (2012) Stable distributions for open populations subject to periodical re-classifications. Journal of Statistical Theory and Practice, 6 (4), 621635.CrossRefGoogle Scholar
Guerreiro, G., Mexia, J. and Miguens, M. (2013) Preliminary results on confidence intervals for open bonus systems. In Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (eds. Lita da Silva, J., Caeiro, F., Natário, I. and Braumann, C.A.), pp. 223230. Berlin: Springer.CrossRefGoogle Scholar
Harville, D. (1997) Matrix Algebra From a Statistician's Perspective. New York: Springer.CrossRefGoogle Scholar
Holtan, J. (1994) Bonus made easy. ASTIN Bulletin, 24 (1), 6577.CrossRefGoogle Scholar
Lemaire, J. (1995) Bonus-Malus Systems in Automobile Insurance. Massachusetts: Kluwer Academic Publishers.CrossRefGoogle Scholar
Mood, A., Graybill, F. and Boes, D. (1963) Introduction to the Theory of Statistics, 3rd ed. Singapore: Mc-Graw Hill International Editions.Google Scholar
Norberg, R. (1976) A credibility theory for automobile bonus system. Scandianvian Actuarial Journal, 2, 92107.CrossRefGoogle Scholar
Parzen, E. (1962) Stochastic Processes. India: Holden-Day.Google Scholar
Schott, J. (2005) Matrix Analysis for Statistics. New Jersey: John Wiley and Sons, Inc.Google Scholar
Tiago de Oliveira, J. (1982) The delta-method for obtention of asymptotic distributions;applications. Publications de l'Institut de Statistique de l'Universitè de Paris, 27, 4970.Google Scholar