Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T01:13:42.280Z Has data issue: false hasContentIssue false

Verbal fluency in relation to reading ability in students with and without dyslexia

Published online by Cambridge University Press:  14 November 2018

ZEINAB SHAREEF*
Affiliation:
Uppsala University
PER ÖSTBERG
Affiliation:
Karolinska Institutet and Karolinska University Hospital, Stockholm
MARTINA HEDENIUS
Affiliation:
Uppsala University and Karolinska Institutet, Stockholm
*
ADDRESS FOR CORRESPONDENCE Zeinab Shareef, Department of Neuroscience, Speech Language Pathology, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden. E-mail: [email protected]

Abstract

Verbal fluency tasks, in which participants generate words during a set time, have been used in research and assessments of neurobiological disorders and impairments. Research on verbal fluency in dyslexia has shown impaired performance in semantic and letter fluency. However, studies report inconsistent results, and action fluency has not been examined in dyslexia. Current research has mainly examined verbal fluency in relation to executive functions, vocabulary, and phonological processing. The present study examined performance on letter, semantic, and action fluency in relation to reading ability in 42 students in higher education, of which 16 had developmental dyslexia and 26 had typical reading development. It was examined if verbal fluency can predict variance in reading ability when group, phonological awareness, and rapid automatized naming are controlled for. Results showed impaired verbal fluency in the developmental dyslexia group. Action fluency and group were significant predictors of reading ability, together explaining 73% of the variance, in a backward elimination regression analysis. The results point to a possible, unique connection between action fluency and reading ability; this connection is discussed based on their neurocognitive underpinnings.

Type
Original Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreou, G., & Trott, K. (2013). Verbal fluency in adults diagnosed with attention-deficit hyperactivity disorder (ADHD) in childhood. ADHD Attention Deficit and Hyperactivity Disorders, 5, 343351.Google Scholar
Ardila, A., Ostrosky-Solís, F., & Bernal, B. (2006). Cognitive testing toward the future: The example of semantic verbal fluency (ANIMALS). International Journal of Psychology, 41, 324332.Google Scholar
Audenaert, K., Brans, B., Laere, K. M., Lahorte, P., Versijpt, J., Heeringen, K. V., & Dierckx, R. (2000). Verbal fluency as a prefrontal activation probe: A validation study using 99mTc-ECD brain SPET. European Journal of Nuclear Medicine, 27, 18001808.Google Scholar
Azambuja, M. J., Haddad, M. S., Radanovic, M., Barbosa, E. R., & Mansur, L. L. (2007). Semantic, phonologic, and verb fluency in Huntington’s disease. Dementia & Neuropsychologia, 1, 381385.Google Scholar
Baldo, J. V., Schwartz, S., Wilkins, D., & Dronkers, N. F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. Journal of the International Neuropsychological Society, 12, 896900.Google Scholar
Baldo, J. V., & Shimamura, A. P. (1998). Letter and category fluency in patients with frontal lobe lesions. Neuropsychology, 12, 259267.Google Scholar
Beber, B. C., & Chaves, M. L. (2014). The basis and applications of the action fluency and action naming tasks. Dementia & Neuropsychologia, 8, 4757.Google Scholar
Benton, A. L. (1968). Differential behavioural effects in frontal lobe disease. Neuropsychologia, 6, 5360.Google Scholar
Berggren, A. (2013). Normering av tre test av fonologisk bearbetningsförmåga hos elever i årskurs 8 [Normative data for three tests of phonological processing skills for students in the 8th grade] (Unpublished master’s thesis, Karolinska Institutet, Stockholm). [In Swedish with English abstract].Google Scholar
Bishop, D., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: Same or different? Psychological Bulletin, 130, 858886.Google Scholar
Bowers, P. G. (2001). Exploration of the basis for rapid naming’s relationship to reading. In M. Wolf (Ed.), Dyslexia, fluency, and the brain (pp. 4164). Baltimore: York Press.Google Scholar
Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., & Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia. Neuropsychologia, 40, 21442155.Google Scholar
Brown, W. E., Eliez, S., Menon, V., Rumsey, J. M., White, C. D., & Reiss, A. L. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56, 781783.Google Scholar
Catts, H. W. (1989). Phonological processing deficits and reading disabilities. In A. Kamhi & H. Catts (Eds.), Reading disabilities: A developmental language perspective (pp. 101132). Boston: Allyn & Bacon.Google Scholar
Chard, D. J., & Dickson, S. V. (1999). Phonological awareness: Instructional and assessment guidelines. Intervention in School and Clinic, 34, 261270.Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.Google Scholar
Cohen, M. J., Morgan, A. M., Vaughn, M., Riccio, C. A., & Hall, J. (1999). Verbal fluency in children: Developmental issues and differential validity in distinguishing children with attention-deficit hyperactivity disorder and two subtypes of dyslexia. Archives of clinical neuropsychology, 14, 433443.Google Scholar
Crawford, J. R., Obonsawin, M. C., & Bremner, M. (1993). Frontal lobe impairment in schizophrenia: Relationship to intellectual functioning. Psychological Medicine, 23, 787790.Google Scholar
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 15101512.Google Scholar
Davis, C., Heidler-Gary, J., Gottesman, R. F., Crinion, J., Newhart, M., Moghekar, A., … Hillis, A. E. (2010). Action versus animal naming fluency in subcortical dementia, frontal dementias, and Alzheimer’s disease. Neurocase, 16, 259266.Google Scholar
Delbeuck, X., Debachy, B., Pasquier, F., & Moroni, C. (2012). Action and noun fluency testing to distinguish between Alzheimer’s disease and dementia with Lewy bodies. Journal of Clinical and Experimental Neuropsychology, 35, 259268.Google Scholar
Eckert, M. (2004). Neuroanatomical markers for dyslexia: A review of dyslexia structural imaging studies. Neuroscientist, 10, 362371.Google Scholar
Fawcett, A., & Nicolson, R. (2004). Dyslexia: The role of the cerebellum. Electronic Journal of Research in Educational Psychology, 2, 3558.Google Scholar
Felton, R. H., Naylor, C. E., & Woods, F. B. (1990). Neuropsychological profile of adult dyslexics. Brain and Language, 39, 485497.Google Scholar
Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26, 874890.Google Scholar
Frith, U. (1985). Beneath the surface of developmental dyslexia. In K. Patterson, J. Marshall, & M. Coltheart (Eds.), Surface dyslexia: Neuropsychological and cognitive studies of phonological reading (pp. 301330). London: Erlbaum.Google Scholar
Frith, U., Landerl, K., & Frith, C. (1995). Dyslexia and verbal fluency: More evidence for a phonological deficit. Dyslexia, 1, 211.Google Scholar
Furnes, B., & Samuelsson, S. (2011). Phonological awareness and rapid automatized naming predicting early development in reading and spelling: Results from a cross-linguistic longitudinal study. Learning and Individual Differences, 21, 8595.Google Scholar
Gaillard, W. D., Sachs, B. C., Whitnah, J. R., Ahmad, Z., Balsamo, L. M., Petrella, J. R., … Grandin, C. B. (2003). Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Human Brain Mapping, 18, 176185.Google Scholar
Galaburda, A. M. (2006). Advances in cross-level research. In G. D. Rosen (Ed.), The dyslexic brain: New pathways in neuroscience discovery (pp. 329354). New York: Psychology Press.Google Scholar
Gough, P. B., & Tunmer, W. E. (1986). Decoding, reading and reading disability. Remedial and Special Education, 7, 610.Google Scholar
Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain, 123, 23732399.Google Scholar
Hällgren, M., & Shareef, Z. (2015). Deklarativt Minne Hos Universitetsstuderande Med Dyslexi: Undersökning av Igenkänningsminne Efter Oavsiktlig Inkodning (Unpublished master’s thesis, Uppsala Universitet).Google Scholar
Hancock, R., Richlan, F., & Hoeft, F. (2016). Possible roles for fronto-striatal circuits in reading disorder. Neuroscience & Biobehavioural Reviews, 72, 243260.Google Scholar
Harrison, J. E., Buxton, P., Husain, M., & Wise, R. (2000). Short test of semantic and phonological fluency: Normal performance, validity and test-retest reliability. British Journal of Clinical Psychology, 39, 181191.Google Scholar
Hatcher, J., Snowling, M. J., & Griffiths, Y. M. (2002). Cognitive assessment of dyslexic student in higher education. British Journal of Educational Psychology, 72, 199–133.Google Scholar
Hedenius, M. (2013). Procedural and declarative memory in children with developmental disorders of language and literacy (Unpublished doctoral dissertation, Acta Universitatis Upsaliensis).Google Scholar
Hedenius, M., Persson, J., Alm, P. A., Ullman, M. T., Howard, J. H., Howard, D. D., & Jennische, M. (2013). Impaired implicit sequence learning in children with developmental dyslexia. Research in Developmental Disabilities, 34, 39243935.Google Scholar
Henry, J. D., & Crawford, J. R. (2004). Verbal fluency deficits in Parkinson’s disease: A meta-analysis. Journal of the International Neuropsychological Society, 10, 608622.Google Scholar
Henry, J. D., Crawford, J. R., & Phillips, L. H. (2004). Verbal fluency performance in dementia of the Alzheimer’s type: a meta-analysis. Neuropsychologia, 42, 12121222.Google Scholar
Holland, S. K., Plante, E., Weber Byars, A., Strawsurg, R. H., Schmithhorst, V. J., & Ball, W. S. Jr. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage, 14, 837843.Google Scholar
Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing: An Interdisciplinary Journal, 2, 127160.Google Scholar
Howard, J. H. Jr., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44, 11311144.Google Scholar
Hsieh, C., & Swanson, H. L. (2009). Reading disabilities in adults: A selective meta-analysis of the literature. Review of Educational Research, 79, 13621390.Google Scholar
Hulslander, J., Olson, R. K., Willcutt, E. G., & Wadsworth, S. J. (2010). Longitudinal stability of reading-related skills and their prediction of reading development. Scientific Studies of Reading, 14, 111136.Google Scholar
Illingworth, S., & Bishop, D. V. M. (2009). Atypical cerebral lateralisation in adults with compensated developmental dyslexia demonstrated using functional transcranial Doppler ultrasound. Brain and Language, 111, 6165.Google Scholar
Iudicello, J. E., Woods, S. P., Parsons, T. D., & Moran, L. M. (2007). Verbal fluency in HIV infection: A meta-analytic review. Journal of the International Neuropsychological Society, 13, 183189.Google Scholar
Järpsten, B. (2002). DLS handledning för skolår 7–9 och år 1 i gymnasiet. Stockholm: Psykologiförlaget AB.Google Scholar
Kail, R., Hall, L. K., & Caskey, B. J. (1999). Processing speed, exposure to print, and naming speed. Applied Psycholinguistics, 20, 303314.Google Scholar
Kamhi, A., & Catts, H. (2012). Language and reading disabilities (3rd ed). Boston: Pearson Education.Google Scholar
Keenan, J. M., Betjemann, R. S., & Olson, R. K. (2008). Reading comprehension tests vary in the skills they assess: Differential dependence on decoding and oral comprehension. Scientific Studies of Reading, 12, 281300.Google Scholar
Kershner, J. R. (2015). A mini-review: Toward a comprehensive theory of dyslexia. Journal of Neurology and Neuroscience, Special Issue.Google Scholar
Kirby, J. R., Georgiou, G. K., Martinussen, R., & Parrila, R. (2010). Naming speed and reading: From prediction to instruction. Reading Research Quarterly, 45, 341362.Google Scholar
Korhonen, T. T. (1995). The persistence of rapid naming problems in children with reading disabilities: A nine-year follow-up. Journal of Learning Disabilities, 28, 232239.Google Scholar
Laasonen, M., Väre, J., Oksanen-Hennah, H., Leppämäki, S., Tani, P., Harno, H., … Cleeremens, A. (2014). Project DyAdd: Implicit learning in adult dyslexia and ADHD. Annals of Dyslexia, 64, 133.Google Scholar
Lefly, D. L, & Pennington, B. F. (1991). Spelling errors and reading fluency in compensated adult dyslexics. Annals of Dyslexia, 41, 141162.Google Scholar
Leh, S. E., Petrides, M., & Strafella, A. P. (2010). The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology, 35, 7085.Google Scholar
Lervåg, A., Bråten, I., & Hulme, C. (2009). The cognitive and linguistic foundations of early reading development: A Norwegian latent variable longitudinal study. Developmental Psychology, 45, 764781.Google Scholar
Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York: Oxford University Press.Google Scholar
Lipowska, M., Bogdanowicz, M., & Buliński, L. (2008). Language skills in children with ADHD and developmental dyslexia. Acta Neuropsychologica, 6, 369379.Google Scholar
Lum, J. A. G., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in Developmental Disabilities, 34, 34603476.Google Scholar
Lyon, G. R., Fletcher, J. M., & Barnes, M. C. (2003). Learning disabilities. In B. J. Mash & R. A. Barkley (Eds.), Child psychopathology (pp. 520586). New York: Guilford Press.Google Scholar
Manis, F. R., Doi, L. M., & Bhadha, B. (2000). Naming speed, phonological awareness, and orthographic knowledge in second graders. Journal of Learning Disabilities, 33, 325333.Google Scholar
McDowd, J., Hoffman, L., Rozek, E., Lyons, K E., Pahwa, R., Burns, J., & Kemper, S. (2011). Understanding verbal fluency in healthy aging, Alzheimer’s disease, and Parkinson’s disease. Neuropsychology, 25, 210225.Google Scholar
McGrath, L. M., Pennington, B. F., Shanahan, M. A., Santerre-Lemmon, L. E., Barnard, H. D., Willcutt, E. G., … Olson, R. K. (2011). A multiple deficit model of reading disability and attention-deficit/hyperactivity disorder: Searching for shared cognitive deficits. Journal of Child Psychology and Psychiatry, 52, 547557.Google Scholar
McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction. New York: Longman.Google Scholar
Melby-Lervåg, M., Lyster, S., & Hulme, C. (2012). Phonological skills and their role in learning to read: A meta-analytic review. Psychological Bulletin, 138, 322352.Google Scholar
Mielnik, A., Łockiewicz, M., & Bogdanowicz, M. (2015). Semantic and phonological verbal fluency in students with dyslexia. Acta Neuropsychologica, 13, 253266.Google Scholar
Moraes, A. L., Guimarães, L. S. P., Joanette, Y., Parente, M. A. M. P., Fonseca, R. P., Almeida, R. M. M. (2013). Effect of aging, education, reading and writing, semantic processing and depression symptoms on verbal fluency. Psichologia: Reflexão e Crìtica, 26, 680690.Google Scholar
Mummery, C. J., Patterson, K., Hodges, J. R., & Wise, R. J. S. (1996). Generating “tiger” as an animal name or a word beginning with t: Differences in brain activation. Proceeding of the Royal Society of London, 263, 989995.Google Scholar
Nation, K. (2005). Picture naming and developmental reading disorders. Journal of Research in Reading, 28, 2838.Google Scholar
Nation, K., Marshall, C. M., & Snowling, M. J. (2001). Phonological and semantic contributions to children’s picture naming skill: Evidence from children with developmental reading disorders. Language and Cognitive Processes, 16, 241259.Google Scholar
National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Retrieved from https://www1.nichd.nih.gov/publications/pubs/nrp/Documents/report.pdfGoogle Scholar
Newcombe, F. (1969). Missile wounds of the brain. A study of psychological deficits. Oxford: Oxford University Press.Google Scholar
Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neuroscience, 30, 135141.Google Scholar
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508511.Google Scholar
Nithart, C., Demont, E., Majerus, S., Leybaert, J., Poncelet, M., & Metz-Lutz, M. N. (2009). Reading disabilities in SLI and dyslexia result from distinct phonological impairments. Developmental Neuropsychology, 34, 296311.Google Scholar
Olofsson, Å. (1994). Ordavkodning: mätning av fonologisk och ortografisk ordavkodningsförmåga. Östersund: Läspedagogiskt centrum.Google Scholar
Orban, P., Lungu, O., & Doyon, J. (2008). Motor sequence learning and developmental dyslexia. Annals of the New York Academy of Sciences, 1145, 151172.Google Scholar
Palmqvist, S., Minthon, L., Wattmo, C., Londos, E., & Hansson, O. (2010). A Quick Test of cognitive speed is sensitive in detecting early treatment response in Alzheimer’s disease. Alzheimer’s Research & Therapy, 2, 29.Google Scholar
Papadopoulos, T. C., Spanoudis, G. C., & Georgiou, G. K. (2016). How is RAN related to reading fluency? A comprehensive examination of the prominent theoretical accounts. Frontiers in Psychology, 7, 115.Google Scholar
Paulin, M. (1997). Fonologisk medvetenhet och läsning hos normalspråkiga barn i årskurs 5 Unpublished master’s thesis, Karolinska Institutet, Stockholm). [In Swedish.]Google Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385413.Google Scholar
Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language, and reading disorders. Annual Reviews of Psychology, 60, 283306.Google Scholar
Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120, 8395.Google Scholar
Piatt, A. L., Fields, J. A., Paolo, A. M., Koller, W. C., & Tröster, A. I. (1999). Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21, 435443.Google Scholar
Piatt, A. L., Fields, J. A., Paolo, A. M., & Tröster, A. I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37, 14991503.Google Scholar
Piatt, A. L., Fields, J. A., Paolo, A. M., & Tröster, A. I. (2004). Action verbal fluency normative data for the elderly. Brain and Language, 89, 580583.Google Scholar
Pierre, J., & Toreheim, J. (2014). Procedurellt Minne Hos Universitetsstuderande med Dyslexi (Unpublished master’s thesis, Uppsala Universitet).Google Scholar
Preston, J. L., & Edwards, M. L. (2007). Phonological processing skills of adolescents with residual speech sound errors. Language, Speech, and Hearing Services in Schools, 38, 297308.Google Scholar
Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41, 148.Google Scholar
Rodrigues, I. T., Ferreira, J. J., Coelho, M., Rosa, M. M., & Castro-Caldas, A. (2015). Action verbal fluency in Parkinson’s patients. Arquivos de Neuro-Psiquiatria, 73, 520525.Google Scholar
Rosser, A., & Hodges, J. R. (1994). Initial letter and semantic category fluency in Alzheimer’s disease, Huntington’s disease, and progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 57, 13891394.Google Scholar
Ruff, R. M., Light, R. H., Parker, S. B., & Levin, H. S. (1997). The psychological construct of word fluency. Brain and Language, 57, 394405.Google Scholar
Sanjuán, A., Bustamante, J. C., Forn, C., Ventura-Campos, N., Barrós-Loscertales, A., Martínez, J. C., … Avila, C. (2010). Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology, 52, 407415.Google Scholar
Sauzéon, H., Raboutet, C., Rodrigues, J., Langevin, S., Schelstraete, A., Feyereisen, P., … N’Kauoa, B. (2011). Verbal knowledge as a compensation determinant of adult age differences in verbal fluency tasks over time. Journal of Adult Development, 18, 144154.Google Scholar
Scarborough, H. (1998). Early identification of children at risk of reading disabilities: Phonological awareness and some other promising predictors. In B. K. Shapiro, P. J. Accardo, & A. J. Capute (Eds.), Specific reading disability: A view of the spectrum (pp. 75119). Timonium, MD: York Press.Google Scholar
Schatschneider, C., Fletcher, J. M., Francis, D. J., Carlson, C. D., & Foorman, B. R. (2004). Kindergarten prediction of reading skills: A longitudinal comparative analysis. Journal of Educational Psychology, 96, 265282.Google Scholar
Shao, Z., Janse, E., Visser, K., & Meyer, A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in Psychology, 5, 110.Google Scholar
Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., … Lyon, G. R. (2003). Neural systems for compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54, 2533.Google Scholar
Signorini, M., & Volpato, C. (2006). Action fluency in Parkinson’s disease: A follow-up study. Movement Disorders, 21, 467472.Google Scholar
Smith-Spark, J. H., Henry, L. A., Messer, D. J., & Zięcik, A. P. (2017). Verbal and non-verbal fluency in adults with developmental dyslexia: Phonological processing or executive control problems? Dyslexia, 23, 234250.Google Scholar
Snowling, M., Nation, K., Moxham, P., Gallagher, A., & Frith, U. (1997). Phonological processing skills of dyslexic students in higher education: A preliminary report. Journal of Research in Reading, 20, 3141.Google Scholar
Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests. Administration, norms, and commentary. Oxford: Oxford University Press.Google Scholar
Sunseth, K., & Bowers, P. G. (2002). Rapid naming and phonemic awareness: Contributions to reading, spelling, and orthographic knowledge. Scientific Studies of Reading, 6, 401429.Google Scholar
Tallberg, I. M., Ivachova, E., Tinghag, K. J., & Östberg, P. (2008). Swedish norms for word fluency tests: FAS, animals and verbs. Scandinavian Journal of Psychology, 49, 479485.Google Scholar
Tillema, A. (2015). Semantic word representations in higher education students with dyslexia (Unpublished master’s Thesis, University of Groningen).Google Scholar
Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138146.Google Scholar
Tunmer, W. E., & Greaney, K. (2010). Defining dyslexia. Journal of Learning Disabilities, 43, 229243.Google Scholar
Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231270.Google Scholar
Ullman, M. T., & Pierpoint, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41, 399433.Google Scholar
Vanderauwera, J., Altarelli, I., Vandermosten, M., De Vos, A., Wouters, J., & Ghesquière, P. (2016). Atypical structural asymmetry of the planum temporale is related to family history of dyslexia. Cerebral Cortex, 1, 110.Google Scholar
Vukovic, R. K., Wilson, A. M., & Nash, K. K. (2004). Naming speed deficits in adults with reading disabilities: Test of the double-deficit hypothesis. Journal of Learning Disabilities, 37, 440450.Google Scholar
Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101, 192212.Google Scholar
Wass, M., Ibertsson, T., Sahlén, B., Lyxell, B., Hällgren, M., & Larsby, B. (2005). SIPS: Sound Information Processing System (test material). Linköping: Linköping University.Google Scholar
Wiig, E. H., Nielsen, N. P., Minthon, L., & Warkentin, S. (2002). AQT—A Quick Test of Cognitive Speed. Screeninginstrument för bedömning av kognitiv snabbhet. Stockholm: Pearson Assessment.Google Scholar
Willcutt, E. G., Betjemann, R. S., McGrath, L. M., Chhabildas, N. A., Olson, R. K., DeFries, J. C., & Pennington, B. F. (2010). Etiology and neuropsychology of comorbidity between RD and ADHD: The case for multiple-deficit models. Cortex, 46, 13451361.Google Scholar
Wilson, A. M., & Lesaux, N. K. (2001). Persistence of phonological processing deficits in college students with dyslexia who have age-appropriate reading skills. Journal of Learning Disabilities, 34, 394400.Google Scholar
Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415438.Google Scholar
Wolf, M., Bowers, P. G., & Biddle, K. (2000). Naming-speed processes, timing, and reading: A conceptual review. Journal of Learning Disabilities, 33, 387407.Google Scholar
Woods, S. P., Morgan, E. E., Dawson, M., Cobb, S. J., Grant, I., & HIV Neurobehavioral Research Center (HNRC) Group. (2006). Action (verb) fluency predicts dependence in instrumental activities of daily living in persons infected with HIV-1. Journal of Clinical and Experimental Neuropsychology, 28, 10301042.Google Scholar