Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T22:59:06.865Z Has data issue: false hasContentIssue false

“It is alive!” Evidence for animacy effects in semantic categorization and lexical decision

Published online by Cambridge University Press:  28 May 2019

Patrick Bonin*
Affiliation:
LEAD-CNRS, Université de Bourgogne Franche-Comté
Margaux Gelin
Affiliation:
LEAD-CNRS, Université de Bourgogne Franche-Comté
Vivien Dioux
Affiliation:
LEAD-CNRS, Université de Bourgogne Franche-Comté
Alain Méot
Affiliation:
Université Clermont Auvergne, CNRS, LAPSCO
*
*Corresponding author. Email: [email protected]

Abstract

Animacy is one of the basic semantic features of word meaning and influences perceptual and episodic memory processes. However, evidence that this variable also influences lexicosemantic processing is mixed. As animacy is a semantic variable thought to have evolutionary roots, we first examined its influence in a semantic categorization task that did not make the animacy dimension salient, namely, concrete-abstract categorization. Animates were categorized faster (and more accurately) than inanimates. We then assessed the influence of animacy in two lexical decision experiments. In Experiment 2, we mostly used legal nonwords, whereas in Experiment 3, we varied the context of the nonwords across participants in such a way that the discriminability between words and nonwords was either high or low. Animates yielded faster decision times than inanimates when legal nonwords were used (Experiment 2) and when the discriminability between words and nonwords was low (i.e., “difficult nonwords” in Experiment 3), but the difference between the two types of words was not reliable when discriminability was high (e.g., illegal strings of letters, i.e., “easy nonwords” in Experiment 3). The findings suggest that animacy is a core meaning-related dimension that influences a large number of processes involved in perception, episodic memory, and semantic memory.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alario, F.-X., & Ferrand, L. (1999). A set of 400 pictures standardized for French: Norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. Behavior Research Methods, Instruments, & Computers, 31, 531552.CrossRefGoogle ScholarPubMed
Balota, D. A., Cortese, M. J., Sergent-Marshall, S., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133, 283316.CrossRefGoogle ScholarPubMed
Balota, D. A., Ferraro, F. R., & Connor, L. T. (1991). On the early influence of meaning in word recognition: A review of the literature. In Schwanenflugel, P. J. (Ed.), The psychology of word meanings (pp. 187218). Hillsdale, NJ: Erlbaum.Google Scholar
Barber, H. A., Otten, L. J., Kousta, S.-T., & Vigliocco, G. (2013). Concreteness in word processing: ERP and behavioral effects in a lexical decision task. Brain & Language, 125, 4753.CrossRefGoogle Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral Brain Sciences, 22, 577609.Google ScholarPubMed
Bonin, P., Gelin, M., & Bugaiska, A. (2014). Animates are better remembered than inanimates: Further evidence from word and picture stimuli. Memory & Cognition, 42, 370382.CrossRefGoogle ScholarPubMed
Bonin, P., Gelin, M., Laroche, B., Méot, A., & Bugaiska, A. (2015). The “how” of animacy effects in episodic memory. Experimental Psychology, 62, 371384.CrossRefGoogle Scholar
Bonin, P., Méot, A., Aubert, L. F., Malardier, N., Niedenthal, P. M., & Capelle-Toczek, M. C. (2003). Normes de concrétude, de valeur d’imagerie, de fréquence subjective et de valence émotionnelle pour 866 mots [Norms of concreteness, imageability, subjective frequency and valence for 866 French words]. L’Année Psychologique, 103, 655694.CrossRefGoogle Scholar
Bonin, P., Méot, A., & Bugaiska, A. (2018). Concreteness norms for 1, 659 French words: Relationships with other psycholinguistic variables and word recognition times. Behavior Research Methods, 50, 23662387.CrossRefGoogle ScholarPubMed
Bonin, P., Peereman, R., Malardier, N., Méot, A., & Chalard, M. (2003). A new set of 299 pictures for psycholinguistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity, image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, & Computers, 35, 158167.CrossRefGoogle ScholarPubMed
Bugaiska, A., Grégoire, L., Camblats, A. M., Gelin, M., Méot, A., & Bonin, P. (2019). Animacy and attentional processes: Evidence from the Stroop task. Quarterly Journal of Experimental Psychology, 72, 882889.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20, 213261.CrossRefGoogle ScholarPubMed
Caramazza, A., & Mahon, B. Z. (2003). The organization of conceptual knowledge: The evidence from category-specific semantic deficits. Trends in Cognitive Science, 7, 354361.CrossRefGoogle ScholarPubMed
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 134.CrossRefGoogle ScholarPubMed
Cilibrasi, R. L., & Vitanyi, P. M. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19, 370383.CrossRefGoogle Scholar
Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335359.CrossRefGoogle Scholar
Coltheart, M., Davelaar, E., Jonasson, J., & Besner, D. (1977). Access to the internal lexicon. In Dornic, S. (Ed.), Attention and performance VI. Hillsdale, NJ: Erlbaum.Google Scholar
Davis, T., Xue, G., Love, B. C., Preston, A. R., & Poldrack, R. A. (2014). Global neural pattern similarity as a common basis for categorization and recognition memory. Journal of Neuroscience, 34, 74727484.CrossRefGoogle ScholarPubMed
Di Giorgio, E., Lunghi, M., Simion, F., & Vallortigara, G. (2017). Visual cues of motion that trigger animacy perception at birth: The case of self-propulsion. Developmental Science, 20, e12394.CrossRefGoogle ScholarPubMed
Evans, G., Lambon Ralph, M. A., & Woollams, A. M. (2012). What’s in a word? A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin & Review, 19, 325331.CrossRefGoogle Scholar
Ferrand, L. (2001). Normes d’associations verbales pour 280 mots “abstraits.” L’Année Psychologique, 101, 683721.CrossRefGoogle Scholar
Gelin, M., Bugaiska, A., Méot, A., & Bonin, P. (2017). Are animacy effects in episodic memory independent of encoding instructions? Memory, 25, 218.CrossRefGoogle ScholarPubMed
Gelin, M., Bugaiska, A., Méot, A., Vinter, A., & Bonin, P. (2019). Animacy effects in episodic memory: Do imagery processes really play a role? Memory, 27, 209223.CrossRefGoogle ScholarPubMed
Gelman, R., & Spelke, E. (1981). The development of thoughts about animate and inanimate objects: Implications for research on social cognition. In Flavell, J. H. & Hope, L. (Eds.), The development of social development in children (pp. 4366). Cambridge: Cambridge University Press.Google Scholar
Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M. R., & Tan, L.-C. (2016). Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in Psychology, 7, 976.CrossRefGoogle ScholarPubMed
Guerrero, G., & Calvillo, D. P. (2016). Animacy increases second target reporting in a rapid serial visual presentation task. Psychonomic Bulletin & Review, 23, 18321838.CrossRefGoogle Scholar
Heard, A., Madan, C. R., Protzner, A. B., & Pexman, P. M. (2019). Getting a grip on sensorimotor effects in lexical–semantic processing. Behavior Research Methods, 51, 113.CrossRefGoogle ScholarPubMed
Hutson, J., & Damian, M. F. (2014). Semantic gradients in picture-word interference tasks: Is the size of interference effects affected by the degree of semantic overlap? Frontiers in Psychology, 5, 872.CrossRefGoogle ScholarPubMed
Izura, C., & Hernández-Muñoz, N. (2017). The role of semantics in Spanish word recognition: An insight from lexical decision and categorization tasks. Open Linguistics, 3, 500515.CrossRefGoogle Scholar
Jackson, R. E., & Calvillo, D. P. (2013). Evolutionary relevance facilitates visual information processing. Evolutionary Psychology, 11, 10111026.CrossRefGoogle ScholarPubMed
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 1434.CrossRefGoogle ScholarPubMed
LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, A. D. (2013). Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience, 33, 54665474.CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60, 2751.CrossRefGoogle ScholarPubMed
Nairne, J. S. (2010). Adaptive memory: Evolutionary constraints on remembering. In Ross, B. H. (Ed.), Psychology of learning and motivation (Vol. 53, pp. 132). Burlington, VT: Academic Press.Google Scholar
Nairne, J. S. (2015). Adaptive memory: Novel findings acquired through forward engineering. In Lindsay, D. S., Kelley, C. M., Yonelinas, A. P., and Roediger, H. L. (Eds.), Remembering: Attributions, processes, and control in human memory. New York: Psychology Press.Google Scholar
Nairne, J. S., VanArsdall, J. E., & Cogdill, M. (2017). Remembering the living: Episodic memory is tuned to animacy. Current Directions in Psychological Science, 26, 2227.CrossRefGoogle Scholar
Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N. S., Cogdill, M., & LeBreton, J. M. (2013). Adaptive memory: The mnemonic value of animacy. Psychological Science, 24, 20992105.CrossRefGoogle ScholarPubMed
New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36, 516524.CrossRefGoogle ScholarPubMed
New, J., Cosmides, L., & Tooby, J. (2007). Category-specific attention for animals reflects ancestral priorities, not expertise. Proceedings of the National Academy of Sciences of the USA, 104, 1659816603.CrossRefGoogle Scholar
Pexman, P. M. (2012). Meaning-level influences on visual word recognition. In Adelman, J. S. (Ed.), Visual word recognition: Vol. 2. Meaning and context, individuals, and development (pp. 2443). Hove, UK: Psychology Press.Google Scholar
Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin & Review, 15, 161167.CrossRefGoogle ScholarPubMed
Pexman, P. M., Heard, A., Llyod, E., & Yap, M. Y. (2017). The Calgary semantic decision project: Concrete/abstract decision data for 10, 000 English words. Behavior Research Methods, 49, 407417.CrossRefGoogle ScholarPubMed
Popp, E. Y., & Serra, M. J. (2016). Adaptive memory: Animacy enhances free recall but impairs cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 186201.Google ScholarPubMed
Popp, E. Y., & Serra, M. J. (2018). The animacy advantage for free-recall performance is not attributable to greater mental arousal. Memory, 26, 8995.CrossRefGoogle Scholar
Psychology Software Tools, Inc. [E-Prime 3.0]. (2016). Retrieved from http://www.pstnet.comGoogle Scholar
Pulvermüller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain and Language, 127, 86103.CrossRefGoogle ScholarPubMed
Radanović, J., & Milin, P. (2011). Morpho-semantic properties of Serbian nouns: Animacy and gender pairs. Psihologija, 44, 343366.CrossRefGoogle Scholar
Radanović, J., Westbury, C., & Milin, P. (2016). Quantifying semantic animacy: How much are words alive? Applied Psycholinguistics, 37, 14771499.CrossRefGoogle Scholar
Rostad, K., Yott, J., & Poulin-Dubois, D. (2012). Development of categorization in infancy: Advancing forward to the animate/inanimate level. Infant Behavior & Development, 35, 584595.CrossRefGoogle ScholarPubMed
Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499520.CrossRefGoogle Scholar
Sidhu, D. M., & Pexman, P. M. (2016). Moving more memorable than proving? Effects of embodiment and imagined enactment on verb memory. Frontiers in Psychology, 7, 1010.CrossRefGoogle ScholarPubMed
Snodgrass, J. C., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174215.Google ScholarPubMed
Stone, G., & Van Orden, G. C. (1993). Strategic control of processing in word recognition. Journal of Experimental Psychology: Human Perception and Performance, 19, 744774.Google ScholarPubMed
Strain, E., Patterson, K., & Seidenberg, M. S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 11401154.Google ScholarPubMed
VanArsdall, J. E., Nairne, J. S., Pandeirada, J. N. S., & Cogdill, M. (2015). Adaptive memory: Animacy effects persist in paired-associate learning. Memory, 25, 657663.CrossRefGoogle Scholar
Xiao, X., Dong, Q., Chen, C., & Xue, G. (2016). Neural pattern similarity underlies the mnemonic advantages for living words. Cortex, 79, 99111.CrossRefGoogle ScholarPubMed
Yap, M. J., Lim, G. Y., & Pexman, P. M. (2015). Semantic richness effects in lexical decision: The role of feedback. Memory & Cognition, 8, 11481167.CrossRefGoogle Scholar
Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. J. (2012). An abundance of riches: Cross-task comparisons of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6, 72.CrossRefGoogle ScholarPubMed
Yap, M. J., Tan, S. E., Pexman, P. M., & Hargreaves, I. S. (2011). Is more always better? Effects of semantic richness on lexical decision, speeded pronunciation, and semantic classification. Psychonomic Bulletin & Review, 18, 742750.CrossRefGoogle ScholarPubMed
Zannino, G. D., Perri, R., Pasqualetti, P., Caltagirone, C., & Carlesimo, G. A. (2006). Analysis of the semantic representations of living and nonliving concepts: A normative study. Cognitive Neuropsychology, 23, 515540.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Jacobs, A. M., & Stone, G. O. (1996). Statistical analysis of the bidirectional inconsistency of spelling and sound in French. Behavior Research Methods, Instruments, & Computers, 28, 504515.CrossRefGoogle Scholar
Supplementary material: File

Bonin et al. supplementary material

Bonin et al. supplementary material 1

Download Bonin et al. supplementary material(File)
File 72.7 KB
Supplementary material: File

Bonin et al. supplementary material

Bonin et al. supplementary material 2

Download Bonin et al. supplementary material(File)
File 43.4 KB