Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T00:30:14.671Z Has data issue: false hasContentIssue false

Effect of voicing on perceptual auditory laterality in Estonian and Norwegian native speakers

Published online by Cambridge University Press:  27 June 2017

RENÉ WESTERHAUSEN*
Affiliation:
University of Oslo
NELE PÕLDVER
Affiliation:
University of Tartu
RICHARD NAAR
Affiliation:
University of Tartu
DOMINIKA RADZIUN
Affiliation:
University of Oslo
MARIA SILVIA KAAREP
Affiliation:
University of Tartu
KAIRI KREEGIPUU
Affiliation:
University of Tartu
KENNETH HUGDAHL
Affiliation:
University of Bergen and Haukeland University Hospital
PÄRTEL LIPPUS
Affiliation:
Univerrsity of Tartu
KRISTIINA KOMPUS
Affiliation:
University of Bergen and University of Tallinn
*
ADDRESS FOR CORRESPONDENCE René Westerhausen, Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, POB 1094, Blindern, 0317 Oslo, Norway. E-mail: [email protected]

Abstract

As a reliable and valid measures of perceptual auditory laterality, dichotic listening has been successfully applied in studies in many countries and languages. However, languages differ in the linguistic relevance of change in initial phoneme of words (e.g., for word identification). In the present cross-language study, we examine the effect of these differences on dichotic-listening task performance to establish how characteristics of one's native language affect the perception of nonnative phonological features. We compared 33 native speakers of Norwegian, a language characterized by a clear distinction between voiced and unvoiced initial plosive consonants, with 30 native speakers of Estonian, a language that has exclusively unvoiced initial phonemes. Using a free-report dichotic-listening paradigm utilizing pairs of voiced (/ba/, /da/, /ga/) and unvoiced (/pa/, /ta/, /ka/) stop-consonant vowels as stimulus material, the Norwegian native speakers were found to be more sensitive to the voicing of the initial plosive than the Estonian group. “Voicing” explained 69% and 18% of the variance in the perceptual auditory laterality in the Norwegian and the Estonian sample, respectively. This indicates that experiential differences, likely during acquisition of the mother tongue in early development, permanently shape the sensitivity to the voicing contrast.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, M., Llera, J. E., Rimol, L. M., & Hugdahl, K. (2008). Using dichotic listening to study bottom-up and top-down processing in children and adults. Child Neuropsychology, 14, 470479.Google Scholar
Arciuli, J., Rankine, T., & Monaghan, P. (2010). Auditory discrimination of voice-onset time and its relationship with reading ability. Laterality, 15, 343360.Google Scholar
Asu, E. L., & Teras, P. (2009). Estonian. Journal of the International Phonetic Association, 39, 367372.CrossRefGoogle Scholar
Bayazıt, O., Öniz, A., Hahn, C., Güntürkün, O., & Özgören, M. (2009). Dichotic listening revisited: Trial-by-trial ERP analyses reveal intra- and interhemispheric differences. Neuropsychologia, 47, 536545.Google Scholar
Berlin, C. I., Lowe-Bell, S. S., Cullen, J. K. Jr., Thompson, C. L., & Loovis, C. F. (1973). Dichotic speech perception: An interpretation of right-ear advantage and temporal offset effects. Journal of the Acoustical Society of America, 53, 699709.CrossRefGoogle ScholarPubMed
Best, C. T., McRoberts, G. W., & Goodell, E. (2001). Discrimination of non-native consonant contrasts varying in perceptual assimilation to the listener's native phonological system. Journal of the Acoustical Society of America, 109, 775794.Google Scholar
Bless, J. J., Westerhausen, R., Arciuli, J., Kompus, K., Gudmundsen, M., & Hugdahl, K. (2013). “Right on all occasions?”—On the feasibility of laterality research using a smartphone dichotic listening application. Frontiers in Psychology, 13, 42.Google Scholar
Bless, J. J., Westerhausen, R., Torkildsen, J. V. K., Gudmundsen, M., Kompus, K., & Hugdahl, K. (2015). Laterality across languages: Results from a global dichotic listening study using a smartphone application. Laterality, 20, 434452.Google Scholar
Brancucci, A., Penna, S. D., Babiloni, C., Vecchio, F., Capotosto, P., Rossi, D., Rossini, . . ., P., M. (2008). Neuromagnetic functional coupling during dichotic listening of speech sounds. Human Brain Mapping, 29, 253264.Google Scholar
Bryden, M. P. (1988). An overview of the dichotic listening procedure and its relation to cerebral organization. In Hugdahl, K. (Ed.), Handbook of dichotic listening: Theory, methods, and research (pp. 144). Chichester: Wiley.Google Scholar
Cutting, J. E. (1976). Auditory and linguistic processes in speech perception: Inferences from six fusions in dichotic listening. Psychological Review, 83, 114140.Google Scholar
Commission, European. (2012). Europeans and their languages. Factsheet Estonia. Special Eurobarometer 386. Retrieved from http://www.gesis.org/eurobarometer-data-service/publications/ Google Scholar
Fernandes, M., Smith, M., Logan, W., Crawley, A., & McAndrews, M. (2006). Comparing language lateralization determined by dichotic listening and fMRI activation in frontal and temporal lobes in children with epilepsy. Brain and Language, 96, 106114.Google Scholar
Gadea, M., Marti-Bonmatí, L., Arana, E., Espert, R., Salvador, A., & Casanova, B. (2009). Corpus callosum function in verbal dichotic listening: Inferences from a longitudinal follow-up of relapsing-remitting multiple sclerosis patients. Brain and Language, 110, 101105.Google Scholar
Galle, M. E., & McMurray, B. (2014). The development of voicing categories: A quantitative review of over 40 years of infant speech perception research. Psychonomic Bulletin & Review, 21, 884906.Google Scholar
Gerber, S. E., & Goldman, P. (1971). Ear preference for dichotically presented verbal stimuli as a function of report strategies. Journal of the Acoustical Society of America, 49, 11631168.Google Scholar
Hellige, J. B. (1993). Hemispheric asymmetry: What's right and what's left. Cambridge, MA: Harvard University Press.Google Scholar
Hirnstein, M., Westerhausen, R., Korsnes, M. S., & Hugdahl, K. (2013). Sex differences in language asymmetry are age-dependent and small: A large-scale, consonant–vowel dichotic listening study with behavioral and fMRI data. Cortex, 49, 19101921.Google Scholar
Hiscock, M., Inch, R., & Kinsbourne, M. (1999). Allocation of attention in dichotic listening: Differential effects on the detection and localization of signals. Neuropsychology, 13, 404.Google Scholar
Hiscock, M., & Kinsbourne, M. (2011). Attention and the right-ear advantage: What is the connection? Brain and Cognition, 76, 263275.Google Scholar
Hugdahl, K. (2003). Dichotic listening in the study of auditory laterality. In Hugdahl, K. & Davidson, R. J. (Eds.), The asymmetrical brain (pp. 441475). Cambridge, MA: MIT Press.Google Scholar
Hugdahl, K. (2011). Fifty years of dichotic listening research—Still going and going and . . . Brain and Cognition, 76, 211213.Google Scholar
Hugdahl, K., & Andersson, L. (1986). The “forced-attention paradigm” in dichotic listening to CV-syllables: A comparison between adults and children. Cortex, 22, 417432.Google Scholar
Hugdahl, K., Westerhausen, R., Alho, K., Medvedev, S., Laine, M., & Hämäläinen, H. (2009). Attention and cognitive control: Unfolding the dichotic listening story. Scandinavian Journal of Psychology, 50, 1122.CrossRefGoogle ScholarPubMed
Kompus, K., Specht, K., Ersland, L., Juvodden, H. T., van Wageningen, H., Hugdahl, K., & Westerhausen, R. (2012). A forced-attention dichotic listening fMRI study on 113 subjects. Brain and Language, 121, 240247.Google Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9, F13F21.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97113.Google Scholar
Rimol, L. M., Eichele, T., & Hugdahl, K. (2006). The effect of voice-onset-time on dichotic listening with consonant–vowel syllables. Neuropsychologia, 44, 191196.Google Scholar
Sandmann, P., Eichele, T., Specht, K., Jäncke, L., Rimol, L. M., Nordby, H., & Hugdahl, K. (2007). Hemispheric asymmetries in the processing of temporal acoustic cues in consonant-vowel syllables. Restorative Neurology and Neuroscience, 25, 227240.Google Scholar
Speaks, C., Niccum, N., Carney, E., & Johnson, C. (1981). Stimulus dominance in dichotic listening. Journal of Speech, Language, and Hearing Research, 24, 430437.CrossRefGoogle ScholarPubMed
Takio, F., Koivisto, M., Jokiranta, L., Rashid, F., Kallio, J., Tuominen, T., . . . Hämäläinen, H. (2009). The effect of age on attentional modulation in dichotic listening. Developmental Neuropsychology, 34, 225239.Google Scholar
Tanaka, S., Kanzaki, R., Yoshibayashi, M., Kamiya, T., & Sugishita, M. (1999). Dichotic listening in patients with situs inversus: Brain asymmetry and situs asymmetry. Neuropsychologia, 37, 869874.Google Scholar
Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43, 231246.CrossRefGoogle ScholarPubMed
Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. Nature Reviews Neuroscience, 4, 3748.Google Scholar
Van der Haegen, L., Westerhausen, R., Hugdahl, K., & Brysbaert, M. (2013). Speech dominance is a better predictor of functional brain asymmetry than handedness: A combined fMRI word generation and behavioral dichotic listening study. Neuropsychologia, 51, 9197.Google Scholar
Voyer, D. (2011). Sex differences in dichotic listening. Brain and Cognition, 76, 245255.Google Scholar
Voyer, D., & Techentin, C. (2009). Dichotic listening with consonant–vowel pairs: The role of place of articulation and stimulus dominance. Journal of Phonetics, 37, 162172.Google Scholar
Westerhausen, R., Helland, T., Ofte, S., & Hugdahl, K. (2010). A longitudinal study of the effect of voicing on the dichotic listening ear advantage in boys and girls at age 5 to 8. Developmental Neuropsychology, 35, 752761.Google Scholar
Westerhausen, R., Kompus, K., & Hugdahl, K. (2014). Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect. NeuroImage, 84, 962970.Google Scholar
Westerhausen, R., Passow, S., & Kompus, K. (2013). Reactive cognitive-control processes in free-report consonant–vowel dichotic listening. Brain and Cognition, 83, 288296.Google Scholar
Westerhausen, R., Woerner, W., Kreuder, F., Schweiger, E., Hugdahl, K., & Wittling, W. (2006). The role of the corpus callosum in dichotic listening: A combined morphological and diffusion tensor imaging study. Neuropsychology, 20, 272.Google Scholar
Wexler, B. E. (1988). Dichotic presentation as a method for single hemisphere stimulation studies. In Hugdahl, K. (Ed.), Handbook of dichotic listening: Theory, methods, and research (pp. 85115). Chichester: Wiley.Google Scholar
Wexler, B. E., & Halwes, T. (1983). Increasing the power of dichotic methods: The fused rhymed words test. Neuropsychologia, 21, 5966.Google Scholar
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 329.Google Scholar