Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:17:10.087Z Has data issue: false hasContentIssue false

Commentary on Pierce, Genesee, Delcenserie, and Morgan

Published online by Cambridge University Press:  28 September 2017

Erik Thiessen
Affiliation:
Carnegie Mellon University
Sandrine Girard
Affiliation:
Carnegie Mellon University

Extract

Early linguistic experiences are intimately tied to later language learning outcomes (e.g., Chilosi et al., 2013; Kaushanskaya & Marian, 2009b). The underlying neural and cognitive processes mediating this relationship remain unclear. Pierce, Genesee, Delcenserie, and Morgan (2017) propose that the phonological working memory (PWM) system is the critical component responsible for linking early linguistic experiences to later language development. Their argument arises from research demonstrating that exposure to linguistic input early in life shapes the kinds of phonological representations that are formed about the sounds within one's native language (Kuhl, 2004; Majerus et al., 2005; Mody, Schwartz, Gravel, & Ruben, 1999; Nittrouer & Burton, 2005). These phonological representations, which the authors believe to be created and stored using the PWM system (Gathercole & Baddeley, 1989), are highly predictive of later language outcomes (Bernhardt, Kemp, & Werker, 2007; Kuhl, 2010; Molfese & Molfese, 1985; Tsao, Liu, & Kuhl, 2004). Explaining language development via memory processes has many benefits. For instance, drawing on a large extant literature on memory-related processes allows researchers to make novel predictions about language learning, especially in regard to its connections to other kinds of learning (e.g., Gathercole, 2006). Identifying PWM as a key driver to language development is a useful insight likely to generate much further research, but it may not go far enough in tying language acquisition to more domain-general aspects of the human cognitive architecture. We believe that a complete account of language will require consideration of additional aspects of the human cognitive architecture working alongside the PWM system.

Type
Commentaries
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119126.Google Scholar
Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15, 460466. doi:10.1111/j.0956-7976.2004.00702.x CrossRefGoogle ScholarPubMed
Bartolotti, J., Marian, V., Schroeder, S. R., & Shook, A. (2011). Bilingualism and inhibitory control influence statistical learning of novel word forms. Bilingualism and Cognitive Control, 522, 146.Google Scholar
Bernhardt, B. M., Kemp, N. M., & Werker, J. F. (2007). Early word-object associations and later language development. First Language, 27, 315328.Google Scholar
Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y. (1997). Training Japanese listeners to identify English /r/ and /l/: IV. Some effects of perceptual learning on speech production. Journal of the Acoustical Society of America, 101, 22992310.Google Scholar
Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138, 487502. doi:10.1037/a0016797 Google Scholar
Buchwald, A., & Rapp, B. (2009). Distinctions between orthographic long-term memory and working memory. Cognitive Neuropsychology, 26, 724751. doi:10.1080/02643291003707332 Google Scholar
Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences, 98, 48054810. doi:10.1073/pnas.081082698 Google Scholar
Chilosi, A. M., Comparini, A., Scusa, M. F., Orazini, L., Forli, F., Cipriani, P., & Berrettini, S. (2013). A longitudinal study of lexical and grammar development in deaf Italian children provided with early cochlear implantation. Ear and Hearing, 34, e28e37. doi:10.1097/AUD.0b013e31827ad687 Google Scholar
Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240247. doi:10.1016/S0022-5371(69)80069-1 Google Scholar
Conway, C. M., & Pisoni, D. B. (2008). Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences, 1145, 113131. doi:10.1196/annals.1416.009 Google Scholar
Cutler, A., & Carter, D. M. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech & Language, 2, 133142. doi:10.1016/0885-2308(87)90004-0 CrossRefGoogle Scholar
Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113.Google Scholar
Engle, R. W., & Kane, M. J. (2003). Executive attention, working memory, and a two-factor theory of cognitive control. Psychology of Learning and Motivation, 44, 145199.Google Scholar
Friederici, A. D., Steinhauer, K., & Pfeifer, E. (2002). Brain signatures of artificial language processing: Evidence challenging the critical period hypothesis. Proceedings of the National Academy of Sciences, 99, 529534. doi:10.1073/pnas.012611199 Google Scholar
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality vs. modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19, 117125. doi:10.1016/j.tics.2014.12.010 Google Scholar
Gathercole, S. E. (2006). Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics, 27, 513543. doi:10.1017/S0142716406060383 Google Scholar
Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200213. doi:10.1016/0749-596X(89)90044-2 Google Scholar
Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1166.Google Scholar
Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105, 251.Google Scholar
Griffiths, O., & Mitchell, C. J. (2008). Selective attention in human associative learning and recognition memory. Journal of Experimental Psychology: General, 137, 626648. doi:10.1037/a0013685 Google Scholar
Harris, Z. S. (1954). Distributional structure. Word, 10, 146162.Google Scholar
Hay, J. F., Graf Estes, K., Wang, T., & Saffran, J. R. (2015). From flexibility to constraint: The contrastive use of lexical tone in early word learning. Child Development, 86, 1022. doi:10.1111/cdev.12269 Google Scholar
Houston, D. M., & Jusczyk, P. W. (2003). Infants’ long-term memory for the sound patterns of words and voices. Journal of Experimental Psychology: Human Perception and Performance, 29, 1143.Google ScholarPubMed
Ingvalson, E. M., McClelland, J. L., & Holt, L. L. (2011). Predicting native English-like performance by native Japanese speakers. Journal of Phonetics, 39, 571584. doi:10.1016/j.wocn.2011.03.003 Google Scholar
Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language, 44, 548567.Google Scholar
Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675687.Google Scholar
Kaushanskaya, M., & Marian, V. (2009a). Bilingualism reduces native-language interference during novel-word learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 829.Google Scholar
Kaushanskaya, M., & Marian, V. (2009b). The bilingual advantage in novel word learning. Psychonomic Bulletin & Review, 16, 705710.Google Scholar
Kruschke, J. K. (2001). Toward a unified model of attention in associative learning. Journal of Mathematical Psychology, 6, 812863. doi:10.1006/jmps.2000.1354 Google Scholar
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831843. doi:10.1038/nrn1533 Google Scholar
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713727. doi:10.1016/j.neuron.2010.08.038 Google Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9, F13F21.CrossRefGoogle ScholarPubMed
Majerus, S., Amand, P., Boniver, V., Demanez, J.-P., Demanez, L., & van der Linden, M. (2005). A quantitative and qualitative assessment of verbal short-term memory and phonological processing in 8-year-olds with a history of repetitive otitis media. Journal of Communication Disorders, 38, 473498. doi:10.1016/j.jcomdis.2005.04.002 Google Scholar
Marchetto, E., & Bonatti, L. L. (2015). Finding words and word structure in artificial speech: The development of infants’ sensitivity to morphosyntactic regularities. Journal of Child Language, 42, 873902. doi:10.1017/S0305000914000452 Google Scholar
Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82, B101B111.Google Scholar
Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227234. doi:10.1037/h0031564 Google Scholar
Mody, M., Schwartz, R. G., Gravel, J. S., & Ruben, R. J. (1999). Speech perception and verbal memory in children with and without histories of otitis media. Journal of Speech, Language, and Hearing Research, 42, 10691079. doi:10.1044/jslhr.4205.1069 CrossRefGoogle ScholarPubMed
Molfese, D. L., & Molfese, V. J. (1985). Electrophysiological indices of auditory discrimination in newborn infants: The bases for predicting later language development? Infant Behavior and Development, 8, 197211. doi:10.1016/S0163-6383(85)80006-0 Google Scholar
Nittrouer, S., & Burton, L. T. (2005). The role of early language experience in the development of speech perception and phonological processing abilities: Evidence from 5-year-olds with histories of otitis media with effusion and low socioeconomic status. Journal of Communication Disorders, 38, 2963. doi:10.1016/j.jcomdis.2004.03.006 Google Scholar
Pallier, C., Bosch, L., & Sebastián-Gallés, N. (1997). A limit on behavioral plasticity in speech perception. Cognition, 64, B9B17.Google Scholar
Perruchet, P., & Vinter, A. (1998). PARSER: A model for word segmentation. Journal of Memory and Language, 39, 246263.Google Scholar
Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca's region. Cognitive Science, 28, 383407.Google Scholar
Pierce, L. J., Genesee, F., Delcenserie, A., & Morgan, G. (2017). Variations in phonological working memory: Linking early language experiences and language learning outcomes. Applied Psycholinguistics, 38, 12651302.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.Google Scholar
Sansavini, A., Bertoncini, J., & Giovanelli, G. (1997). Newborns discriminate the rhythm of multisyllabic stressed words. Developmental Psychology, 33, 311. doi:10.1037/0012-1649.33.1.3 Google Scholar
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26, 17361747. doi:10.1162/jocn_a_00578 Google Scholar
Swingley, D. (1999). Conditional probability and word discovery: A corpus analysis of speech to infants. In Hahn, M. & Stoness, S. C., Eds., Proceedings of the 21st annual conference of the Cognitive Science Society (pp. 724729). Mahwah, NJ: Erlbaum.Google Scholar
Thiessen, E. D., Girard, S., & Erickson, L. C. (2016). Statistical learning and the critical period: How a continuous learning mechanism can give rise to discontinuous learning. Wiley Interdisciplinary Reviews: Cognitive Science, 7, 276288. doi:10.1002/wcs.1394 Google Scholar
Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139, 792814. doi:10.1037/a0030801 Google Scholar
Thiessen, E. D., & Pavlik, P. I. (2013). iMinerva: A mathematical model of distributional statistical learning. Cognitive Science, 37, 310343. doi:10.1111/cogs.12011 Google Scholar
Thiessen, E. D., & Pavlik, P. I. Jr. (2016). Modeling the role of distributional information in children's use of phonemic contrasts. Journal of Memory and Language, 88, 117132. doi:10.1016/j.jml.2016.01.003 Google Scholar
Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39, 706.Google Scholar
Toro, J. M., Sebastian-Gallés, N., & Mattys, S. L. (2009). The role of perceptual salience during the segmentation of connected speech. European Journal of Cognitive Psychology, 21, 786800.Google Scholar
Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005). Speech segmentation by statistical learning depends on attention. Cognition, 97, B25B34. doi:10.1016/j.cognition.2005.01.006 Google Scholar
Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. Child Development, 75, 10671084. doi:10.1111/j.1467-8624.2004.00726.x Google Scholar
Umemoto, A., Scolari, M., Vogel, E. K., & Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36, 14191429. doi:10.1037/a0019324 Google Scholar
Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J. F., & Amano, S. (2007). Unsupervised learning of vowel categories from infant-directed speech. Proceedings of the National Academy of Sciences, 104, 1327313278. doi:10.1073/pnas.0705369104 Google Scholar
Weiss, D. J., Gerfen, C., & Mitchel, A. D. (2010). Colliding cues in word segmentation: The role of cue strength and general cognitive processes. Language and Cognitive Processes, 25, 402422. doi:10.1080/01690960903212254 Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 4963. doi:10.1016/S0163-6383(84)80022-3 Google Scholar
Younger, B. A., Hollich, G., & Furrer, S. D. (2004). An emerging consensus: Younger and Cohen revisited. Infancy, 5, 209216. doi:10.1207/s15327078in0502_6 Google Scholar
Zeithamova, D., Maddox, W. T., & Schnyer, D. M. (2008). Dissociable prototype learning systems: Evidence from brain imaging and behavior. Journal of Neuroscience, 28, 1319413201. doi:10.1523/jneurosci.2915-08.2008 Google Scholar