Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T01:26:47.073Z Has data issue: false hasContentIssue false

Jalapeno or jalapeño: Do diacritics in consonant letters modulate visual similarity effects during word recognition?

Published online by Cambridge University Press:  24 July 2020

Ana Marcet
Affiliation:
Universitat de València
Hnazand Ghukasyan
Affiliation:
Universitat de València
María Fernández-López
Affiliation:
Universitat de València
Manuel Perea*
Affiliation:
Universitat de València and Universidad Nebrija
*
*Address for Correspondence: Manuel Perea, Departamento de Metodología, Av. Blasco Ibáñez, 21 46010-Valencia, Spain. Email: [email protected]

Abstract

Prior research has shown that word identification times to DENTIST are faster when briefly preceded by a visually similar prime (dentjst; ij) than when preceded by a visually dissimilar prime (dentgst). However, these effects of visual similarity do not occur in the Arabic alphabet when the critical letter differs in the diacritical signs: for the target the visually similar one-letter replaced prime (compare and is no more effective than the visually dissimilar one-letter replaced prime Here we examined whether this dissociative pattern is due to the special role of diacritics during word processing. We conducted a masked priming lexical decision experiment in Spanish using target words containing one of two consonants that only differed in the presence/absence of a diacritical sign: n and ñ. The prime-target conditions were identity, visually similar, and visually dissimilar. Results showed an advantage of the visually similar over the visually dissimilar condition for muñeca-type words (muneca-MUÑECA < museca-MUÑECA), but not for moneda-type words (moñeda-MONEDA = moseda-MONEDA). Thus, diacritical signs are salient elements that play a special role during the first moments of processing, thus constraining the interplay between the “feature” and “letter” levels in models of visual word recognition.

Type
Original Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, J. S., Gubian, M., & Davis, C. J. (2018). easyNet: A computational modeling software package for cognitive science, bridging the gap between novices and experts [Computer software]. http://adelmanlab.org/easyNet/Google Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255278. doi:10.1016/j.jml.2012.11.001CrossRefGoogle ScholarPubMed
Bates, D., Machler, M., Balker, B., & Wolker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistcal Software, 67, 148.Google Scholar
Berent, I., & Perfetti, C. A. (1995). A rose is a REEZ: The two-cycles model of phonology assembly in reading English. Psychological Review, 102, 146184. doi:10.1037/0033-295x.102.1.146CrossRefGoogle Scholar
Bowers, J. S., Vigliocco, G., & Haan, R. (1998). Orthographic, phonological, and articulatory contributions to masked letter and word priming. Journal of Experimental Psychology: Human Perception and Performance, 24, 17051719. doi:10.1037/0096-1523.24.6.1705Google ScholarPubMed
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1. doi:10.5334/joc.10CrossRefGoogle Scholar
Caramazza, A., Chialant, D., Capasso, R., & Miceli, G. (2000). Separable processing of consonants and vowels. Nature, 403, 428430. doi:10.1038/3500020CrossRefGoogle ScholarPubMed
Carreiras, M., Gillon-Dowens, M., Vergara, M., & Perea, M. (2009). Are vowels and consonants processed differently? Event-related potential evidence with a delayed letter paradigm. Journal of Cognitive Neuroscience, 21, 275288. doi:10.1162/jocn.2008.21023CrossRefGoogle Scholar
Carreiras, M., & Price, C. J. (2008). Brain activation for consonants and vowels. Cerebral Cortex, 18, 17271735. doi:10.1093/cercor/bhm202CrossRefGoogle ScholarPubMed
Chetail, F., & Boursain, E. (2019). Shared or separated representations for letters with diacritics? Psychonomic Bulletin & Review, 26, 347352. doi:10.3758/s13423-018-1503-0CrossRefGoogle ScholarPubMed
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713758. doi:10.1037/a0019738CrossRefGoogle Scholar
Degno, F., Loberg, O., Zang, C., Zhang, M., Donnelly, N., & Liversedge, S. P. (2019). Parafoveal previews and lexical frequency in natural reading: Evidence from eye movements and fixation-related potentials. Journal of Experimental Psychology: General, 148, 453474. doi:10.1037/xge0000494CrossRefGoogle ScholarPubMed
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9, 335341. doi:10.1016/j.tics.2005.05.004CrossRefGoogle ScholarPubMed
Domínguez, A., & Cuetos, F. (2018). The contrastive value of lexical stress in visual word recognition: Evidence from Spanish. Psicothema, 30, 276282. doi:10.7334/psicothema2018.30Google Scholar
Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for Spanish word properties. Behavior Research Methods, 45, 12461258. doi:10.3758/s13428-013-0326-1CrossRefGoogle ScholarPubMed
Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680698. doi:10.1037/0278-7393.10.4.680Google Scholar
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments y Computers, 35, 116124. doi:10.3758/bf03195503CrossRefGoogle ScholarPubMed
Forster, K. I., Mohan, K., & Hector, J. (2003). The mechanics of masked priming. In Kinoshita, S. & Lupker, S. J. (Eds.), Masked priming: The state of the art (pp. 237). New York: Psychology Press.Google Scholar
Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20, 171179. doi:10.1016/j.tics.2015.12.008CrossRefGoogle ScholarPubMed
Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128156. doi:10.1111/j.1749-818x.2008.00121.xCrossRefGoogle ScholarPubMed
Grainger, J., Rey, A., & Dufau, S. (2008). Letter perception: From pixels to pandemonium. Trends in Cognitive Sciences, 12, 381387. doi:10.1016/j.tics.2008.06.006CrossRefGoogle ScholarPubMed
Gutiérrez-Sigut, E., Marcet, A., & Perea, M. (2019). Tracking the time course of letter visual-similarity effects during word recognition: A masked priming ERP investigation. Cognitive, Affective, and Behavioral Neuroscience, 19, 966984. doi:10.3758/s13415-019-00696-1CrossRefGoogle ScholarPubMed
Hannagan, T., Ktori, M., Chanceaux, M., & Grainger, J. (2012). Deciphering CAPTCHAs: What a Turing test reveals about human cognition. PLoS ONE, 7, e32121. doi:10.1371/journal.pone.0032121CrossRefGoogle ScholarPubMed
Huey, E. B. (1908). The psychology and pedagogy of reading. New York: McMillan. Republished in 1968. Cambridge, MA: MIT Press.Google Scholar
Jacobs, A. M., Grainger, J., & Ferrand, L. (1995). The incremental priming technique: A method for determining within-condition priming effects. Perception & Psychophysics, 57, 11011110. doi:10.3758/BF03208367CrossRefGoogle ScholarPubMed
Johnson, R. L., Perea, M., & Rayner, K. (2007). Transposed-letter effects in reading: Evidence from eye movements and parafoveal preview. Journal of Experimental Psychology: Human Perception and Performance, 33, 209229. doi:10.1037/0096-1523.33.1.209Google ScholarPubMed
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627633. doi:10.3758/brm.42.3.627CrossRefGoogle ScholarPubMed
Kinoshita, S., Robidoux, S., Mills, L., & Norris, D. (2013). Visual similarity effects on masked priming. Memory & Cognition, 42, 821833. doi:10.3758/s13421-013-0388-4CrossRefGoogle Scholar
Lallier, M., Abu Mallouh, R., Mohammed, A. M., Khalifa, B., Perea, M., & Carreiras, M. (2018). Does the visual attention span play a role in reading in Arabic? Scientific Studies of Reading, 22, 181190. doi:10.1080/10888438.2017.1421958CrossRefGoogle Scholar
Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.01171CrossRefGoogle Scholar
Marcet, A., & Perea, M. (2017). Is nevtral NEUTRAL? Visual similarity effects in the early phases of written-word recognition. Psychonomic Bulletin and Review, 24, 11801185. doi:10.3758/s13423-016-1180-9CrossRefGoogle ScholarPubMed
Marcet, A., & Perea, M. (2018a). Can I order a burger at rnacdonalds.com? Visual similarity effects of multi-letter combinations at the early stages of word recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition, 44, 699706. doi:10.1037/xlm0000477Google Scholar
Marcet, A., & Perea, M. (2018b). Visual letter similarity effects during sentence reading: Evidence from the boundary technique. Acta Psychologica, 190, 142149. doi:10.1016/j.actpsy.2018.08.007CrossRefGoogle ScholarPubMed
Massol, S., Duñabeitia, J. A., Carreiras, M., & Grainger, J. (2013). Evidence for letter-specific position coding mechanisms. PLOS ONE, 8, e68460. doi:10.1371/journal.pone.0068460CrossRefGoogle ScholarPubMed
Molinaro, N., Duñabeitia, J. A., Marín-Gutiérrez, A., & Carreiras, M. (2010). From numbers to letters: Feedback regularization in visual word recognition. Neuropsychologia, 48, 13431355. doi:10.1016/j.neuropsychologia.2009.12.037CrossRefGoogle ScholarPubMed
New, B., Araujo, V., & Nazzi, T. (2008). Differential processing of consonants and vowels in lexical access through reading. Psychological Science, 19, 12231227. doi:10.1111/j.1467-9280.2008.02228.xCrossRefGoogle ScholarPubMed
Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there’s nothing special about the perception of orthography. Psychological Review, 119, 517545. doi:10.1037/a0028450CrossRefGoogle ScholarPubMed
Perea, M. (2012). Revisiting Huey: On the importance of the upper part of words during reading. Psychonomic Bulletin and Review, 19, 11481153. doi:10.3758/s13423-012-0304-0CrossRefGoogle ScholarPubMed
Perea, M., Abu Mallouh, R., Mohammed, A., Khalifa, B., & Carreiras, M. (2016). Do diacritical marks play a role at the early stages of word recognition in Arabic? Frontiers in Psychology, 7, 1255. doi:10.3389/fpsyg.2016.01255CrossRefGoogle ScholarPubMed
Perea, M., Abu Mallouh, R., Mohammed, A., Khalifa, B., & Carreiras, M. (2018). Does visual letter similarity modulate masked form priming in young readers of Arabic? Journal of Experimental Child Psychology, 169, 110117. doi:10.1016/j.jecp.2017.12.004CrossRefGoogle ScholarPubMed
Perea, M., Duñabeitia, J. A., & Carreiras, M. (2008). R34D1NG W0RD5 W1TH NUMB3R5. Journal of Experimental Psychology: Human Perception and Performance, 34, 237241. doi:10.1037/0096-1523.34.1.237Google ScholarPubMed
Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7, 6581. doi:10.1016/0010-0285(75)90005-5.CrossRefGoogle Scholar
Rayner, K., Pollatsek, A., Ashby, J., & Clifton, C., Jr. (2012). The psychology of reading (2nd ed.). New York: Psychology Press.CrossRefGoogle Scholar
R Core Team. (2019). R: A language and environment for statistical computing (Version 3.5. 2). Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rosa, E., Perea, M., & Enneson, P. (2016). The role of letter features in visual-word recognition: Evidence from a delayed segment technique. Acta Psychologica, 169, 133142. doi:10.1016/j.actpsy.2016.05.016CrossRefGoogle ScholarPubMed
Rumelhart, D. E., & Siple, P. (1974). Process of recognizing tachistoscopically presented words. Psychological Review, 87, 99118. doi:10.1037/h0036117CrossRefGoogle Scholar
Share, D. L. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584615. doi:10.1037/0033-2909.134.4.584CrossRefGoogle Scholar
Simpson, I. C., Mousikou, P., Montoya, J. M., & Defior, S. (2012). A letter visual-similarity matrix for Latin-based alphabets. Behavior Research Methods, 45, 431439. doi:10.3758/s13428-012-0271-4CrossRefGoogle Scholar
Wiley, R. W., Wilson, C., & Rapp, B. (2016). The effects of alphabet and expertise on letter perception. Journal of Experimental Psychology: Human Perception and Performance, 42, 11861203. doi:10.1037/xhp0000213Google ScholarPubMed
Yang, H., & Lupker, S. J. (2019). Does letter rotation decrease transposed letter priming effects? Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. doi:10.1037/xlm0000697CrossRefGoogle Scholar