Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:05:36.080Z Has data issue: false hasContentIssue false

Uniform convergence of the collocation method for Prandtl's Integro-differential equation

Published online by Cambridge University Press:  17 February 2009

M. R. Capobianco
Affiliation:
Istituto per Applicazioni della Matematica, C.N.R., Via Pietro Castellino 111, 80131 Napoli, Italy.
G. Criscuolo
Affiliation:
Dipartimento di Matematica, Universitá degli Studi Napoli “Frederico II”, Edificio T Complesso Monte Sant' Angelo, Via Cinthia, 80126 Napoli, Italy.
P. Junghanns
Affiliation:
Technische Universität Chemnitz, Fakultät für Mathematik, D–09107 Chemnitz, Germany.
U. Luther
Affiliation:
Technische Universität Chemnitz, Fakultät für Mathematik, D–09107 Chemnitz, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An integro-differential equation of Prandtl's type and a collocation method as well as a collocation-quadrature method for its approximate solution is studied in weighted spaces of continuous functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Berthold, D., Hoppe, W. and Silbermann, B., “A fast algorithm for solving the generalized airfoil equation”, J. Comp. Appl. Math. 43 (1992) 185219.CrossRefGoogle Scholar
[2]Capobianco, M. R., “The stability and the convergence of a collocation method for a class of Cauchy singular integral equations”, Math. Nachr. 162 (1993) 4558.CrossRefGoogle Scholar
[3]Capobianco, M. R., Criscuolo, G. and Junghann, P., “A fast algorithm for Prandtl's integro-differential equation”, J. Comp. Appl. Math. 77 (1997) 103128.CrossRefGoogle Scholar
[4]Capobianco, M. R., Junghanns, P., Luther, U. and Mastroianni, G., “Weighted uniform convergence estimates of the quadrature method for Cauchy singular integral equations”, in Singular Integral Operators and Related Topics (eds Böttcher, A. and Gohberg, I.), Operator theory Advances and Applications, Vol. 90, (Birkhäuser, 1996) 153181.CrossRefGoogle Scholar
[5]Capobianco, M. R. and Russo, M. G., “Uniform convergence estimates for a collocation method for the Cauchy singular integral equation”, J. Integral Eqs Appl. 9 (1997) 125.Google Scholar
[6]Junghanns, P. and Luther, U., “Cauchy singular integral equations in spaces of continuous functions and methods for their numerical solution”, J. Comp. Appl. Math. 77 (1997) 201237.CrossRefGoogle Scholar
[7]Junghanns, P. and Luther, U., “Uniform convergence of a fast algorithm for Cauchy singular integral equations”, Linear Algebra Appl. 275–276 (1998) 327347.CrossRefGoogle Scholar
[8]Junghanns, P. and Luther, U., “Uniform convergence of the quadrature method for Cauchy singular integral equations with weakly singular perturbation kernels”, in Proc. of 3rd International Conference on Functional Analysis and Approximation Theory, (Acquafredda di Maratea,09, 1996) to appear.Google Scholar
[9]Luther, U., “Cauchy singular integral equations in weighted spaces of continuous functions”, Preprint TU, Chemnitz-Zwickau, 1996.Google Scholar
[10]Mastroianni, G., “Uniform convergence of derivatives of Lagrange interpolation”, J. Comp. Appl. Math. 43 (1992) 3751.CrossRefGoogle Scholar
[11]Mastroianni, G. and Russo, M. G., “Lagrange interpolation in some weighted uniform spaces”, in Proc. International Memorial Conference “D. S. Mitrinović”, (Nis, Yugoslavia,06 1996).Google Scholar
[12]Natanson, I. P., Konstruktive Funktionentheorie (Akademie Verlag, Berlin, 1955).Google Scholar
[13]Prössdorf, S. and Silbermann, B., Numerical Analysis for Integral and Related Operator Equations (Akademie Verlag, Berlin, 1991).Google Scholar
[14]Szegö, G., Orthogonal Polynomials (AMS, Providence, Rhode Island, 1939).Google Scholar
[15]Vértesi, P., “Weighted Lagrange interpolation on generalized Jacobi nodes”, in Approximation Theory (eds Govil, N. K. et al. ), Monogr. Textbooks Pure Appl. Math. 212 (Marcel Dekker, New York, 1998) 489497.Google Scholar
[16]Vértesi, P., “On the Lebesgue function of weighted Lagrange interpolation II”, J. Austral. Math. Soc. (Ser. A) 65 (1998) 145162.CrossRefGoogle Scholar