Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T01:57:45.856Z Has data issue: false hasContentIssue false

A unified presentation of generalised Voigt functions

Published online by Cambridge University Press:  17 February 2009

M. Kamarujjama
Affiliation:
Department of Applied Mathematics, Z. H. College of Engg. and Technology, Aligarh Muslim University, Aligarh-202002 (U.P.)India; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Voigt functions occur frequently in a wide variety of problems in several diverse fields of physics. This paper presents a unified study of generalised Voigt functions. In particular, some expansions of unified Voigt functions are given in terms of the original functions. Some deductions from these representations are obtained which give us an opportunity to underline the special rôle of the associated generating functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher transcendental functions, Volume 1 (McGraw-Hill, New York, 1953).Google Scholar
[2]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Table of integral transforms, Volume 1 (McGraw-Hill, New York, 1954).Google Scholar
[3]Exton, H., “On the reducibility of the Voigt functions”, J. Phys. A.: Math. Gen. 14 (1981) L75–L77.CrossRefGoogle Scholar
[4]Fried, B. D. and Conte, S. D., The plasma dispersion function (Academic Press, New York, 1961).Google Scholar
[5]Rainville, E. D., Special functions (The Macmillan Comp., New York, 1960).Google Scholar
[6]Reiche, F., “Uber die Emission, Absorption and Intesitatsverteilung von Spektrallinien”, Ber. Deutsch Phys. Ges. 15 (1913) 321.Google Scholar
[7]Srivastava, H. M. and Manocha, H. L., A treatise on generating functions (Halsted Press, New York, 1984).Google Scholar
[8]Srivastava, H. M. and Miller, E. A., “A unified presentation of the Voigt functions”, Astrophys. Space Sci. 135 (1987) 111118.CrossRefGoogle Scholar
[9]Srivastava, H. M., Pathan, M. A. and Kamarujjama, M., “Some unified presentations of the generalized Voigt functions”, Comm. Appl. Anal. 2 (1998) 4964.Google Scholar
[10]Watson, G. N., A treatise on the theory of Bessel functions (Cambridge Univ. Press, Cambridge, 1944).Google Scholar