Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:44:36.919Z Has data issue: false hasContentIssue false

Symmetry analysis of and first integrals for the continuum Heisenberg spin chain

Published online by Cambridge University Press:  17 February 2009

M. C. Nucci
Affiliation:
Dipartimento di Matematica e Informatica, Università di Perugia, 06123 Perugia, Italy; e-mail: [email protected].
P. G. L. Leach
Affiliation:
GEODYSYC, Department of Mathematics, University of the Aegean, Karlovassi 83 200, Greece.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Daniel et al. [6] analysed the singularity structure of the continuum limit of the one-dimensional anisotropic Heisenberg spin chain in a transverse field and determined the conditions under which the system is nonintegrable and exhibits chaos. We investigate the governing differential equations for symmetries and find the associated first integrals. Our results complement the results of Daniel et al.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Bureau, F. J., “Differential equations with fixed critical points”, Ann. Mat. Pura Appl. (4) 64 (1964) 229364.CrossRefGoogle Scholar
[2]Bureau, F. J., “Differential equations with fixed critical points”, Ann. Mat. Pura Appl. (4) 66 (1964) 1116.CrossRefGoogle Scholar
[3]Chazy, J., “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'integrale générale est à ses points critiques fixes”, Acta Math. 34 (1911) 317385.CrossRefGoogle Scholar
[4]Conte, R., “Singularities of differential equations and integrability”, in Introduction to Methods of Complex Analysis and Geometry for Classical Mechanics and Nonlinear Waves (eds. Benest, D. and Frœschlé, ), (Éditions Frontières, Gif-sur-Yvette, 1994) 49143.Google Scholar
[5]Cosgrove, C. M., “All binomial-type Painlevé equations of the second order and degree three or higher”, Stud. Appl. Math. 89 (1993) 95151.CrossRefGoogle Scholar
[6]Daniel, M., Kruskal, M. D., Lakshmanan, M. and Nakamura, K., “Singularity structure analysis of the continuum Heisenberg spin chain with anisotropy and transverse field: nonintegrability and chaos”, J. Math. Phys. 33 (1992) 771776.CrossRefGoogle Scholar
[7]Feix, M. R., Géronimi, C., Cairó, L., Leach, P. G. L., Lemmer, R. L. and Bouquet, S. É., “On the singularity analysis of ordinary differential equations invariant under time translation and rescaling”, J. Phys. A: Math. Gen. 30 (1997) 74377461.CrossRefGoogle Scholar
[8]Gambier, B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes”, Acta Math. 33 (1909) 155.CrossRefGoogle Scholar
[9]Govinder, K. S. and Leach, P. G. L., “The nature and uses of symmetries of ordinary differential equations”, South African J. Sci. 92 (1996) 2328.Google Scholar
[10]Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series and Products, 5th ed. (Academic Press, San Diego, 1994).Google Scholar
[11]Jimbo, M., Kruskal, M. D. and Miwa, T., “Painlevé test for the self-dual Yang-Mills equation”, Phys. Len. A 92 (1982) 5960.CrossRefGoogle Scholar
[12]Kovalevski, S. V., “Sur le problème de la rotation d'un corps solide autor d'un point fixe”, Acta Math. 12 (1889) 177232.CrossRefGoogle Scholar
[13]Kruskal, M. D. and Clarkson, P. A., “The Painlevé-Kovalevski and poly-Painlevé tests for integrability”, Stud. Appl. Math. 86 (1992) 87165.CrossRefGoogle Scholar
[14]Lemmer, R. L. and Leach, P. G. L., “The Painlevé test, hidden symmetries and the equation y″ + yy′ + ky3 = 0”, J. Phys. A: Math. Gen. 26 (1993) 50175024.CrossRefGoogle Scholar
[15]Lie, S., Differentialgleichungen (Chelsea, New York, 1967).Google Scholar
[16]Lie, S., Theorie der Transformationsgruppen, Volume 1, II and III (Chelsea, New York, 1970).Google Scholar
[17]Lie, S., Geometrie der Berühstransformationen (Chelsea, New York, 1977).Google Scholar
[18]Painlevé, P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France 28 (1900) 201261.CrossRefGoogle Scholar
[19]Painlevé, P., “Sur les singularités essentielles des équations différentielles”, C. R. Acad. Sci. Paris 133 (1901) 910913.Google Scholar
[20]Painlevé, P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math. 25 (1902) 185.CrossRefGoogle Scholar
[21]Weiss, J., Tabor, M. and Carnevale, G., “The Painlevé property for partial differential equations”, J. Math. Phys. 24 (1983) 522526.CrossRefGoogle Scholar