Article contents
Pointwise estimates for higher order convexity preserving polynomial approximation
Published online by Cambridge University Press: 17 February 2009
Abstract
DeVore-Gopengauz-type operators have attracted some interest over the recent years. Here we investigate their relationship to shape preservation. We construct certain positive convolution-type operators Hn, s, j which leave the cones of j-convex functions invariant and give Timan-type inequalities for these. We also consider Boolean sum modifications of the operators Hn, s, j show that they basically have the same shape preservation behavior while interpolating at the endpoints of [−1, 1], and also satisfy Telyakovskiῐ- and DeVore-Gopengauz-type inequalities involving the first and second order moduli of continuity, respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov, Beatson, DeVore, Yu and Leviatan.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1994
References
- 6
- Cited by