Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T03:21:46.317Z Has data issue: false hasContentIssue false

OPTION PRICING UNDER THE FRACTIONAL STOCHASTIC VOLATILITY MODEL

Published online by Cambridge University Press:  13 August 2021

Y. HAN
Affiliation:
School of Mathematics, Jilin University, Changchun, 130012,China e-mail: [email protected], [email protected]
Z. LI
Affiliation:
School of Mathematics, Jilin University, Changchun, 130012,China e-mail: [email protected], [email protected]
C. LIU*
Affiliation:
School of Mathematics, Jilin University, Changchun, 130012,China e-mail: [email protected], [email protected]

Abstract

We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Itô’s formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented.

Type
Research Article
Copyright
© Australian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, C. A. and Roma, A., “Stochastic volatility option pricing”, J. Financ. Quant. Anal. 29 (1994) 589607; doi:10.2307/2331111.CrossRefGoogle Scholar
Barndoff-Nielsen, O. E., “Processes of normal inverse Gaussian type”, Finance Stoch. 2 (1997) 4168; doi:10.1007/s007800050032.CrossRefGoogle Scholar
Bates, D. S., “Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options”, Rev. Financ. Stud. 9 (1996) 69107; doi:10.1093/rfs/9.1.69.CrossRefGoogle Scholar
Black, F. and Scholes, M., “The pricing of options and corporate liabilities”, J. Polit. Econ. 81 (1973) 637659; doi:10.1086/260062.CrossRefGoogle Scholar
Breeden, D. T., “An intertemporal asset pricing model with stochastic consumption and investment opportunities”, J. Financ. Econ. 7 (1979) 265296; doi:10.1016/0304-405X(79)90016-3.CrossRefGoogle Scholar
Carr, P., Geman, H., Madab, D. B. and Yor, M., “The fine structure of asset returns: An empirical investigation”, J. Business 75 (2002) 305332; doi:10.1086/338705.CrossRefGoogle Scholar
Comte, F. and Renault, E., “Long memory in continuous-time stochastic volatility models”, Math. Finance 8 (1998) 291323; doi:10.1111/1467-9965.00057.CrossRefGoogle Scholar
Comte, F., Coutin, L. and Renault, E., “Affine fractional stochastic volatility models”, Ann. Finance 8 (2012) 337378; doi:10.1007/s10436-010-0165-3.CrossRefGoogle Scholar
Cox, J. C., Ingersoll, J. E. and Ross, S., “A theory of the term structure of interest rates”, Econometrica 53 (1985) 385407; doi:10.2307/1911242.CrossRefGoogle Scholar
Duncan, T. E., Hu, Y. and Pasik-Duncan, B., “Stochastic calculus for fractional Brownian motion I. Theory”, SIAM J. Control Optim. 38 (2000) 582612; doi:10.1137/S036301299834171X.CrossRefGoogle Scholar
Euch, O. E. and Rosenbaum, M., “Perfect hedging in rough Heston models”, Ann. Appl. Probab. 28 (2018) 38133856; doi:10.1214/18-AAP1408.Google Scholar
Euch, O. E. and Rosenbaum, M., “The characteristic function of rough Heston models”, Math. Finance 29 (2016) 338; doi:10.1111/mafi.12173.CrossRefGoogle Scholar
Euch, O. E., Fukasawa, M. and Rosenbaum, M., “The microstructural foundations of leverage effect and rough volatility”, Finance Stoch. 22 (2018) 241280; doi:10.1007/s00780-018-0360-z.CrossRefGoogle Scholar
Fouque, J.-P., Papanicolaou, G. and Sircar, K. R., “Mean-reverting stochastic volatility”, Int. J. Theor. Appl. Finance 3 (2000) 101142; doi:10.1142/S0219024900000061.CrossRefGoogle Scholar
Fouque, J.-P., Papanicolaou, G. and Sircar, K. R., Derivatives in financial markets with stochastic volatility (Cambridge University Press, Cambridge, 2000); doi:10.1111/j.1475-4932.1935.tb02774.x.Google Scholar
Fouque, J.-P., Papanicolaou, G., Sircar, R. and Sølna, K., Multiscale stochastic volatility for equity, interest rate, and credit derivatives (Cambridge University Press, Cambridge, 2011); doi:10.1017/CBO9781139020534.CrossRefGoogle Scholar
Garnier, J. and Sølna, K., “Correction to Black-Scholes formula due to fractional stochastic volatility”, SIAM J. Financial Math. 8 (2017) 560588; doi:10.1137/15M1036749.CrossRefGoogle Scholar
Gatheral, J., Jaisson, T. and Rosenbaum, M., “Volatility is rough”, Quant. Finance 18 (2018) 933949; doi:10.1080/14697688.2017.1393551.CrossRefGoogle Scholar
Gulisashvili, A., Analytically tractable stochastic stock price models (Springer, New York, 2012); doi:10.1007/978-3-642-31214-4.CrossRefGoogle Scholar
Henry-Labordere, P., Analysis, geometry, and modeling in finance: advanced methods in option pricing (CRC Press, Boca Raton, FL, 2008); doi:10.1201/9781420087000.CrossRefGoogle Scholar
Heston, S. L., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Financ. Stud. 6 (1993) 327343; doi:10.1093/rfs/6.2.327.CrossRefGoogle Scholar
Hu, Y., “Integral transformations and anticipative calculus for fractional Brownian motions”, Mem. Amer. Math. Soc. 175 (2005) 825; doi:10.1090/memo/0825.Google Scholar
Hull, J. and White, A., “The pricing of options on assets with stochastic volatilities”, J. Finance 42 (1987) 281300; doi:10.1111/j.1540-6261.1987.tb02568.x.CrossRefGoogle Scholar
Jacquier, A., Keller-Ressel, M. and Mijatoviciä, A., “Large deviations and stochastic volatility with jumps: Asymptotic implied volatility for affine models”, Stochastics 85 (2013) 321345; doi:10.1080/17442508.2012.720687.CrossRefGoogle Scholar
Keller-Ressel, M., “Moment explosions and long-term behavior of affine stochastic volatility models”, Math. Finance 21 (2011) 7398; doi:10.1111/j.1467-9965.2010.00423.x.CrossRefGoogle Scholar
Lewis, A., Option valuation under stochastic volatility (Finance Press, Newport Beach, CA, 2000); https://econpapers.repec.org/bookchap/vsvvbooks/ovsv.htm.Google Scholar
Merton, R. C., “Option pricing when underlying stock returns are discontinuous”, J. Financ. Econ. 3 (1976) 125144; doi:10.1016/0304-405X(76)90022-2.CrossRefGoogle Scholar
Merton, R. C., “Theory of rational option pricing”, Bell J. Econ. Manag. Sci. 4 (1973) 141183; doi:10.2307/3003143.CrossRefGoogle Scholar
Rebonato, R., Volatility and correlation: The perfect hedger and the fox, 2nd ed (John Wiley & Sons, Hoboken, NJ, 2004); doi:10.1002/9781118673539.CrossRefGoogle Scholar
Rogers, L. C. G., “Arbitrage with fractional Brownian motion”, Math. Finance 7 (1997) 95105; doi:10.1111/1467-9965.00025.CrossRefGoogle Scholar
Sheng, C., Chiu, H. and Chen, A., “Optimally pricing European options with real distributions”, Adv. Hybrid Inform. Technol. 4413 (2007) 7382; doi:10.1007/978-3-540-77368-9_8.CrossRefGoogle Scholar
Stein, E. M. and Stein, J. C., “Stock price distributions with stochastic volatility: an analytic approach”, Rev. Financ. Stud. 4 (1991) 727752; doi:10.1093/rfs/4.4.727.CrossRefGoogle Scholar
Schöbel, R. and Zhu, J., “Stochastic volatility with an Ornstein–Uhlenbeck process: an extension”, Eur. Finance Rev. 3 (1999) 2346; doi:10.2139/ssrn.100831.CrossRefGoogle Scholar
Vilela Mendes, R., Oliveira, M. J. and Rodrigues, A. M., “The fractional volatility model: No-arbitrage, leverage, and completeness”, Physics 419 (2015) 470478; doi:10.1016/j.physa.2014.10.056.Google Scholar