Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:36:58.509Z Has data issue: false hasContentIssue false

ON THE EXISTENCE OF CHAOTIC BEHAVIOUR IN PURE AND SIMPLE MICROBIAL COMPETITION: THE ROLE OF CONTOIS KINETICS

Published online by Cambridge University Press:  21 November 2013

MOHAMMAD ASIF*
Affiliation:
Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
EMAD ALI*
Affiliation:
Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
ABDELHAMID AJBAR*
Affiliation:
Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Microbial competition for nutrients is a common phenomenon that occurs between species inhabiting the same environment. Bioreactors are often used for the study of microbial competition since the number and type of microbial species can be controlled, and the system can be isolated from other interactions that may occur between the competing species. A common type of competition is the so-called “pure and simple” competition, where the microbial populations interact in no other way except the competition for a single rate-limiting nutrient that affects their growth rates. The issue of whether pure and simple competition under time-invariant conditions can give rise to chaotic behaviour has been unresolved for decades. The third author recently showed, for the first time, that chaos can theoretically occur in these systems by analysing the dynamics of a model where both competing species grow following the biomass-dependent Contois model while the yield coefficients associated with the two species are substrate-dependent. In this paper we show that chaotic behaviour can occur in a much simpler model of pure and simple competition. We examine the case where only one species grows following the Contois model with variable yield coefficient while the other species is allowed to grow following the simple Monod model with constant yield. We show that while the static behaviour of the proposed model is quite simple, the dynamic behaviour is complex and involves period doubling culminating in chaos. The proposed model could serve as a basis to re-examine the importance of Contois kinetics in predicting complex behaviour in microbial competition.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

Ajbar, A., “Study of complex dynamics in pure and simple microbial competition”, Chem. Engrg. Sci. 80 (2012) 188194; doi:10.1016/j.ces.2012.06.023.CrossRefGoogle Scholar
Ajbar, A. and Alhumaizi, K., “Microbial competition: study of global branching phenomena”, AIChE J. 46 (2000) 321334; doi:10.1002/aic.690460211.CrossRefGoogle Scholar
Ajbar, A. and Alhumaizi, K., Dynamics of the chemostat: a bifurcation theory approach (CRC Press, Baca Raton, FL, 2012).Google Scholar
Alqahtani, R. T., Nelson, M. I. and Worthy, A. L., “Analysis of a chemostat model with variable yield coefficient: contois kinetics”, ANZIAM J. 53 (2012) C155C171; http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5093.CrossRefGoogle Scholar
Aris, R. and Humphrey, A. E., “Dynamics of a chemostat in which two organisms compete for a common substrate”, Biotech. Bioengrg. 19 (1977) 13751386; doi:10.1002/bit.260190910.CrossRefGoogle Scholar
Bailey, J. E. and Ollis, D. F., Biochemical engineering fundamentals (McGraw-Hill, New York, 1986).Google Scholar
Beltran-Heredia, J., Torregrosa, J., Dominguez, J. R. and Garcia, J., “Ozonation of black-table-olive industrial wastewaters: Effect of an aerobic biological pretreatment”, J. Chem. Tech. Biotech. 75 (2000) 561568; doi:10.1002/1097-4660(200007)75:7<561::AID-JCTB254>3.3.CO;2-2.3.0.CO;2-B>CrossRefGoogle Scholar
Blok, J. and Struys, J., “Measurement and validation of kinetic parameter values for prediction of biodegradation rates in sewage treatment”, Ecotoxicol. Environ. Safety 33 (1996) 217227; doi:10.1006/eesa.1996.0028.CrossRefGoogle ScholarPubMed
Butler, G. J. and Wolkowicz, G. S. K., “A mathematical model of the chemostat with a general class of functions describing nutrient uptake”, SIAM J. Appl. Math. 45 (1985) 138151; doi:10.1137/0145006.CrossRefGoogle Scholar
Contois, D. E., “Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures”, Microbiol. 21 (1959) 4050; doi:10.1099/00221287-21-1-40.Google ScholarPubMed
Doedel, E. J., Auto: software for continuation and bifurcation problems in ordinary differential equations (CIT Press, Pasadena, CA, 1986).Google Scholar
Fredrickson, A. G. and Stephanopoulos, G., “Microbial competition”, Science 213 (1981) 972979; doi:10.1126/science.7268409.CrossRefGoogle ScholarPubMed
Gaki, A., Theodorou, A., Vayenas, D. V. and Pavlou, S., “Complex dynamics of microbial competition in the gradostat”, J. Biotech. 139 (2009) 3846; doi:10.1016/j.jbiotec.2008.08.006.CrossRefGoogle ScholarPubMed
Ghaly, A. E., Sadaka, S. S. and Hazza’a, A., “Kinetics of an intermittent flow, continuous-mix anaerobic reactor”, Energy Sources 22 (2000) 525542; doi:10.1080/00908310050013758.Google Scholar
El Hajji, M. and Rapaport, A., “Practical coexistence of two species in the chemostat—A slow–fast characterization”, Math. Biosci. 218 (2009) 3339; doi:10.1016/j.mbs.2008.12.003.CrossRefGoogle ScholarPubMed
Hansen, S. R. and Hubbell, S. P., “Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes”, Science 207 (1980) 14911493; doi:10.1126/science.6767274.CrossRefGoogle ScholarPubMed
Hardin, G., “The competitive exclusion principle”, Science 131 (1960) 12921297; doi:10.1126/science.131.3409.1292.CrossRefGoogle ScholarPubMed
Hsu, S. B., “A competition model for a seasonally fluctuating nutrient”, J. Math. Biol. 9 (1980) 115132; doi:10.1007/BF00275917.CrossRefGoogle Scholar
Hsu, S. B., Hubbell, S. and Waltman, P., “A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms”, SIAM J. Appl. Math. 32 (1977) 366383; doi:10.1137/0132030.CrossRefGoogle Scholar
Hutchinson, G. E., “The paradox of the plankton”, Am. Nat. 95 (1961) 137145; doi:10.1086/282171.CrossRefGoogle Scholar
Işik, M. and Sponza, D. T., “Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater”, Process Biochem. 40 (2005) 11891198; doi:10.1016/j.procbio.2004.04.014.CrossRefGoogle Scholar
Koch, A. L., “The Monod model and its alternatives”, in: Mathematical modeling in microbial ecology (eds Koch, A. L., Robinson, J. and Milliken, G. A.), (Chapman & Hall, New York, 1997), 6293.Google Scholar
Krzystek, L., Ledakowicz, S., Kahle, H.-J. and Kaczorek, K., “Degradation of household biowaste in reactors”, J. Biotech. 92 (2001) 103112; doi:10.1016/S0168-1656(01)00352-2.CrossRefGoogle ScholarPubMed
Lenas, P. and Pavlou, S., “Periodic, quasi-periodic and chaotic coexistence of two competing microbial populations in a periodically operated chemostat”, Math. Biosci. 121 (1994) 61110; doi:10.1016/0025-5564(94)90032-9.CrossRefGoogle Scholar
Monod, J., “The growth of bacterial cultures”, Ann. Rev. Microbiol. 3 (1949) 371394; doi:10.1146/annurev.mi.03.100149.002103.CrossRefGoogle Scholar
Nelson, M. I., Balakrishnan, E., Sidhu, H. S. and Chen, X. D., “A fundamental analysis of continuous flow bioreactor models and membrane reactor models to process industrial wastewaters”, Chem. Engrg. J. 140 (2008) 521528; doi:10.1016/j.cej.2007.11.035.CrossRefGoogle Scholar
Nelson, M. I. and Sidhu, H. S., “Reducing the emission of pollutants in food processing wastewaters”, Chem. Engrg. Process. 46 (2007) 429436; doi:10.1016/j.cep.2006.04.012.CrossRefGoogle Scholar
Pavlou, S., “Microbial competition in bioreactors”, Chem. Ind. Chem. Engrg. Q. 12 (2006) 7181; doi:10.2298/CICEQ0601071P.CrossRefGoogle Scholar
Pavlou, S., Kevrekidis, I. G. and Lyberatos, G., “On the coexistence of competing microbial species in a chemostat under cycling”, Biotech. Bioengrg. 35 (1990) 224232; doi:10.1002/bit.260350303.CrossRefGoogle Scholar
Pirt, S. J., Principles of microbe and cell cultivation (Wiley, New York, 1975).Google Scholar
Powell, G. E., “Structural instability of the theory of simple competition”, J. Theoret. Biol. 132 (1988) 421435; doi:10.1016/S0022-5193(88)80082-1.CrossRefGoogle Scholar
Shuler, M. L. and Kargi, F., Bioprocess engineering: Basic concepts (Prentice Hall, Englewood Cliffs, NJ, 1992).Google Scholar
Smith, H. and Waltman, P., The theory of the chemostat: Dynamics of microbial competition (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, J. A., “Determining Lyapunov exponents from a time series”, Physica D 16 (1985) 285317; doi:10.1016/0167-2789(85)90011-9.CrossRefGoogle Scholar
Wolkowicz, G. S. K. and Lu, Z., “Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates”, SIAM J. Appl. Math. 52 (1992) 222233; doi:10.1137/0152012.CrossRefGoogle Scholar