Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T21:04:06.282Z Has data issue: false hasContentIssue false

On the approximation order from certain multivariate spline spaces

Published online by Cambridge University Press:  17 February 2009

Wolfgang Dahmen
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Universitätsstraße 1, 4800 Bielefeld, West Germany.
Charles A. Micchelli
Affiliation:
IBM Thomas J. Watson Research Center, P.O Box 218, Yorktown Heights, New York 10598, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we determine the optimal controlled approximation rates from certain bivariate splines on regular meshes.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]de Boor, C. and Höling, K., “B-splines from parallelepipeds”, J. Analyse Math. 2 (1983), 99115.Google Scholar
[2]de Boor, C. and Hölling, K., “Bivariate bix splines and smooth pp. functions on a three direction mesh”, J. Comput. Appl. Math. 9 (1983), 1328.CrossRefGoogle Scholar
[3]de Boor, C. and Hölling, K., “Approximation order from bivariate C1-cubics A counterexample”, Proc. Amer. Math. Soc. 87 (1983), 649655.CrossRefGoogle Scholar
[4]Dahmen, W. and Micchelli, C. A., ‘Translates of multivariate splines”, 52/53 (1983), 217234Linear Algebra Appl..Google Scholar
[5]Fix, G. and Strang, G., “Fourier analysis of the finite element method in Ritz-Galerkin theory”, Stud. Appl. Math. 48 (1969), 265273.Google Scholar
[6]Fix, G. and Strang, G., “A Fourier analysis of the finite element variational method” C.I.M.E.II, Ciclo Erice (1971), in Constructive aspercts of functional anaylsis (de. Geymonat, G.), (Cremonese, Rome, 1973,), 793840.Google Scholar
[7]Mikhlin, S. G., Approximation on a rectangular grid (Sijthoff and Noordhoff, Alphen aan den Rijn, 1979).Google Scholar
[8]Strang, G., “The finite element method and approximation theory” in Numerical solution of partial differential equations, SYNSPADE 1970, univ. of maryland, collage Park (ed. Hubbard, B.), Academic Press, New York, (1970).Google Scholar