Published online by Cambridge University Press: 17 February 2009
Tensor identities for finite dimensional representations of arbitrary semi-simple Lie algebras are derived and are applied to the construction of left-projection operators which project out the shift components of tensor operators from the left. The corresponding adjoint identities are also derived and are used for the construction of right-projection operators. It is also shown that, on a finite dimensional irreducible representation, these identities may be considerably reduced. Commutation relations between the shift tensors of a tensor operator are also computed in terms of the roots appearing in the tensor identities.