Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:25:01.107Z Has data issue: false hasContentIssue false

A NOTE ON THE NUMERICAL APPROACH FOR THE REACTION–DIFFUSION PROBLEM WITH A FREE BOUNDARY CONDITION

Published online by Cambridge University Press:  13 October 2010

E. ÖZUĞURLU*
Affiliation:
Bahçeşehir University, Faculty of Arts and Sciences, Department of Mathematics and Computer Sciences, 34353 Beşiktaş, Istanbul, Turkey (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The equation modelling the evolution of a foam (a complex porous medium consisting of a set of gas bubbles surrounded by liquid films) is solved numerically. This model is described by the reaction–diffusion differential equation with a free boundary. Two numerical methods, namely the fixed-point and the averaging in time and forward differences in space (the Crank–Nicolson scheme), both in combination with Newton’s method, are proposed for solving the governing equations. The solution of Burgers’ equation is considered as a special case. We present the Crank–Nicolson scheme combined with Newton’s method for the reaction–diffusion differential equation appearing in a foam breaking phenomenon.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Adams, R. A., Sobolev spaces (Academic Press, New York, 1975).Google Scholar
[2]Banhart, J. and Weaire, D., “On the road again: metal foams find favor”, Phys. Today (2002).CrossRefGoogle Scholar
[3]Brakke, K. A., “The surface evolver”, Experiment. Math. 1 (1992) 141165.CrossRefGoogle Scholar
[4]Colin, T. and Fabrie, P., “Semidiscretization in time for nonlinear Schrodinger-waves equations”, Discrete. Contin. Dyn. Syst. 4 (1998) 671690.CrossRefGoogle Scholar
[5]Colin, T. and Fabrie, P., “A free boundary problem modeling a foam drainage”, Math. Models Methods Appl. Sci. 10 (2000) 945961.Google Scholar
[6]Cox, S. J., Bradley, G., Hutzler, S. and Weaire, D., “Vertex corrections in the theory of foam drainage”, J. Phys.: Condens. Matter 13 (2001) 48634869.Google Scholar
[7]Cox, S. J., Weaire, D., Hutzler, S., Murphy, J., Phelan, R. and Verbist, G., “Applications and generalizations of the foam drainage equation”, Proc. R. Soc. Lond. A 456 (2000) 24412464.CrossRefGoogle Scholar
[8]Dahmani, Z., Mesmoudi, M. M. and Bebbouchi, R., “The foam drainage equation with time- and space-fractional derivatives solved by the Adomian method”, Electron. J. Qual. Theory Differ. Equ. 30 (2008) 110.CrossRefGoogle Scholar
[9]Debnath, L., Nonlinear partial differential equations (Birkhäuser, Boston, 1997).Google Scholar
[10]Durand, M. and Langevin, D., “Physicochemical approach to the theory of foam drainage”, Eur. Phys. J. E 7 (2002) 3544.CrossRefGoogle Scholar
[11]Exerowa, D. and Kruglyakov, P. M., Foam and foam films: theory, experiment and application (Elsevier, Amsterdam, 1998).Google Scholar
[12]Gol’dfarb, I. I., Kann, K. B. and Shreiber, I. R., “Liquid flow in foams”, Transactions of USSR Academy of Sciences: Ser. Mech. Liquids Gas, Fluid Dynamics 23 (1988) 244249. [English translation], http://dx.doi.org/10.1007/BF01051894.Google Scholar
[13]Koehler, S. A., Hilgenfeldt, S. and Stone, H. A., “A generalized view of foam drainage: experiment and theory”, Langmuir 16 (2000) 63276341.CrossRefGoogle Scholar
[14]Koehler, S. A., Stone, H. A., Brenner, M. P. and Eggers, J., “Dynamics of foam: drainage”, Phys. Rev. E 58 (1998) 20972106.CrossRefGoogle Scholar
[15]Kraynik, A. M., “Foam drainage”, Sandia report, 1983, SAND83-0844.Google Scholar
[16]Kruglyakov, P. M., Karakashev, S. I., Nguyen, A. V. and Vilkova, N. G., “Foam drainage”, Curr. Opinion in Colloid Int. Sci. 13 (2008) 163170.Google Scholar
[17]Leonard, R. A. and Lemlich, R., “A study of interstitial liquid flow in foam”, A. I. Chem. Eng. J. 11 (1965) 1825.Google Scholar
[18]Verbist, G., Weaire, D. and Kraynik, A. M., “The foam drainage equation”, J. Phys.: Condens. Matter 8 (1996) 37153731.Google Scholar
[19]Weaire, D., “Foam physics”, Adv. Eng. Mater. 4 (2002) 723.3.0.CO;2-9>CrossRefGoogle Scholar
[20]Weaire, D., Findlay, S. and Verbist, G., “Measurement of foam drainage using AC conductivity”, J. Phys.: Condens. Matter 7 (1995) L217L222.Google Scholar
[21]Weaire, D. and Hutzler, S., The physics of foams (Clarendon Press, Oxford, 1999).Google Scholar
[22]Weaire, D., Hutzler, S., Cox, S., Kern, N., Alonso, M. D. and Drenckhan, W., “The fluid dynamics of foam”, J. Phys.: Condens. Matter 15 (2003) S65S73.Google Scholar