Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T18:47:18.406Z Has data issue: false hasContentIssue false

Near-field expansion of the metric due to a cosmic string

Published online by Cambridge University Press:  17 February 2009

Malcolm Anderson
Affiliation:
School of Engineering and Mathematics, Edith Cowan University, Joondalup Drive, Joondalup, Western Australia 6027, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By erecting a co-ordinate system tailored to the geometry of a cosmic string and examining the properties of the near gravitational field, it is possible to distinguish two types of gravitational waves supported by a general string metric. The first type, travelling waves, are completely decoupled from the curvature of the world sheet, whereas the second type, which I choose to call curvature waves, are generated in response to any non-trivial geometric structure on the string.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Aryal, M., Ford, L. H. and Vilenkin, A., “Cosmic strings and black holes”, Phys. Rev. D34 (1986) 22632266.Google ScholarPubMed
[2]Carter, B., “Mechanics of cosmic strings”, Phys. Lett. B238 (1990) 166171.CrossRefGoogle Scholar
[3]Clarke, C. J. S., Vickers, J. A. and Wilson, J. P., “Generalised functions and distributional curvature of cosmic strings”, Class. Quant. Grav. 13 (1996) 24852498.CrossRefGoogle Scholar
[4]Economou, A. and Tsoubelis, D., “Interaction of cosmic strings with gravitational waves: A new class of exact solutions”, Phys. Rev. Lett. D61 (1988) 20462049.CrossRefGoogle ScholarPubMed
[5]Economou, A. and Tsoubelis, D., “Rotating cosmic strings and gravitational soliton waves”, Phys. Rev. D38 (1988) 498505.Google ScholarPubMed
[6]Frolov, V. P. and Garfinkle, D., “Interaction of cosmic strings with gravitational waves”, Phys. Rev. D42 (1990) 39803982.Google ScholarPubMed
[7]Garfinkle, D., “Traveling waves in strongly gravitating cosmic string”, Phys. Rev. D41 (1990) 11121115.Google Scholar
[8]Garriga, J. and Verdaguer, E., “Cosmic strings and Einstein-Rosen soliton waves”, Phys. Rev. D36 (1987) 22502258.Google ScholarPubMed
[9]Geroch, R. and Traschen, J., “Strings and other distributional sources in general relativity”, Phys. Rev. D36 (1987) 10171031.Google ScholarPubMed
[10]Gott, J. R., “Gravitational lensing effects of vacuum strings: Exact solutions”, Astrophys. J. 288 (1985) 422427.CrossRefGoogle Scholar
[11]Gott, J. R., “Closed timelike curves produces by pairs of moving cosmic strings: Exact solutions”, Phys. Rev. Lett. 66 (1991) 11261129.CrossRefGoogle ScholarPubMed
[12]Hiscock, W., “Exact gravitational field of a string”, Phys. Rev. D31 (1985) 32883290.Google ScholarPubMed
[13]Israel, W., “Line sources in general relativity”, Phys. Rev. D15 (1977) 935941.Google Scholar
[14]Kibble, T. W. B. and Turok, N., “Self-intersection of cosmic strings”, Phys. Rev. Lett. B116 (1982) 141143.CrossRefGoogle Scholar
[15]Letelier, P., “Multiple cosmic strings”, Class. Quant. Grav. 4 (1987) L75L77.CrossRefGoogle Scholar
[16]Linet, B., “The static metrics with cylindrical symmetry describing a model of cosmic strings”, Gen. Rel. Grav. 17 (1985) 11091115.CrossRefGoogle Scholar
[17]Mazur, P. O., “Spinning cosmic strings and quantization of energy”, Phys. Rev. Lett. 57 (1986) 929932.CrossRefGoogle ScholarPubMed
[18]Ostriker, J., Thompson, C. and Witten, E., “Cosmological effects of superconducting strings”, Phys. Lett. B180 (1986) 231239.CrossRefGoogle Scholar
[19]Papadopoulos, D. and Xanthopoulos, B. C., “Tomimatsu-Sato solutions describe cosmic strings interacting with gravitational waves”, Phys. rev. D41 (1990) 25122518.Google ScholarPubMed
[20]Sokolov, D. D. and Starobinskii, A. A., “The structure of the curvature tensor at conical singularities”, Sov. Phys. Dokl. 22 (1977) 312314.Google Scholar
[21]Soleng, H. H., “A spinning string”, Gen. Rel. Grav. 24 (1992) 111117.CrossRefGoogle Scholar
[22]Stein-Schabes, J. A., “Nonstatic vacuum strings: Exterior and interior solutions”, Phys. Rev. D33 (1986) 35453548.Google ScholarPubMed
[23]Tian, Q., “Cosmic strings with cosmological constant”, Phys. Rev. D33 (1986) 35493555.Google ScholarPubMed
[24]Turok, N., “Grand unified strings and galaxy formation”, Nucl. Phys. B242 (1984) 520541.CrossRefGoogle Scholar
[25]Unruh, W. G., Hayward, G., Israel, W. and McManus, D., “Cosmic-string loops are straight”, Phys. Rev. Lett. 62 (1989) 28972900, Note that the variables d and r used in this paper correspond to my r and ρ = (αr)l/α respectively.CrossRefGoogle ScholarPubMed
[26]Vachaspati, T., “Gravitational effects of cosmic strings”, Nucl. Phys. B277 (1986) 593604.CrossRefGoogle Scholar
[27]Vilenkin, A., “Gravitational field of vacuum domain”, Phys. Rev. D23 (1981) 852857.Google Scholar
[28]Vilenkin, A., “Cosmic strings and domain walls”, Phys. Rep. 121 (1985) 263315.Google Scholar
[29]Xanthopoulos, B. C., “Cylindrical waves and cosmic strings of Petrov type D”, Phys. Rev. D34 (1986) 36083616.Google ScholarPubMed
[30]Xanthopoulos, B. C., “A rotating cosmic string”, Phys. Lett. B178 (1986) 163166.Google Scholar