Published online by Cambridge University Press: 17 February 2009
Defining a spherical Struve function we show that the Struve transform of half integer order, or spherical Struve transform,
where n is a non-negative integer, may under suitable conditions be solved for f(t):
where is the sum of the first n + 1 terms in the asymptotic expansion of φn(x) as x → ∞. The coefficients in the asymptotic expansion are identified as
It is further shown that functions φn (x) which are representable as spherical Struve transforms satisfy n + 1 integral constraints, which in turn allow the construction of many equivalent inversion formulae.