Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T08:05:00.519Z Has data issue: false hasContentIssue false

INDEX

Published online by Cambridge University Press:  07 September 2023

Rights & Permissions [Opens in a new window]

Abstract

Type
Other
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

ABBAS, S.; see SHAIKHET, L. 394

ABDI, A.; see MORADI, A. 264

ABDI, A., see RAMAZANI, P. 69

ALEHYANE, O.; see FARHANE, M. 40

ASANJARANI, A. and NAZARATHY, Y.; Stationary Markovian arrival processes: Results and open problems 54

BASSOM, A. P.; Editorial 89

BROADBRIDGE, P. and GOARD, J.; Exact solutions of hyperbolic reaction-diffusion equations in two dimensions 338

BROADBRIDGE, P., NANAYAKKARA, R. and OLENKO, A.; On multifractionality of spherical random fields with cosmological applications 90

CELIK, C. and DEGERLI, K.; Hopf bifurcation analysis of a fractional-order Holling–Tanner predator-prey model with time delay 23

CHARKHGARD, H., KESHANIAN, K., ESMAEILBEIGI, R. and CHARKHGARD, P.; The magic of Nash social welfare in optimization: Do not sum, just multiply! 119

CHARKHGARD, P.; see CHARKHGARD, H. 119

CHEN, W. and JIANG, X.; An IMEX-based approach for the pricing of equity warrants under fractional Brownian motion models 380

DAHIYA, K.; see JAIN, E. 183

DEGERLI, K.; see CELIK, C. 23

DHAR, A. K.; see HALDER, S. 292

ESMAEILBEIGI, R.; see CHARKHGARD, H. 119

FARHANE, M., ALEHYANE, O. and SOUHAR, O.; Three-dimensional analytical solution of the advection-diffusion equation for air pollution dispersion 40

FARROW, D. E.; see MANSOOR, W. F. 1

FORBES, L. K.; see WALTERS, S. J. 227

FORBES, L. K. and WALTERS, S. J.; Fully 3D fluid outflow from a spherical source 149

GOARD, J.; An analytical approximation for convertible bonds 135

GOARD, J.; see BROADBRIDGE, P. 338

HALDER, S. and DHAR, A. K.; A modification to the Schrödinger equation for broader bandwidth gravity-capillary waves on deep water with depth-uniform current 292

HE, X.-J. & LIN, S.; Volatility swaps valuation under a modified risk-neutralized Heston model with a stochastic long-run variance level 250

HOCKING, G. C.; see MANSOOR, W. F. 1

HOJJATI, G.; see MORADI, A. 264

HOJJATI, G.; see RAMAZANI, P. 69

JAIN, E., DAHIYA, K. and VERMA, V.; Branching technique for a bi-objective two-stage assignment problem 183

JIANG, X.; see CHEN, W. 380

KESHANIAN, K.; see CHARKHGARD, H. 119

LAMICHHANE, B. P. and SHAW-CARMODY, J. A.; A local projection stabilization for convection–diffusion–reaction equations using biorthogonal systems 205

LIN, S.; see HE, X.-J. 250

MANSOOR, W. F., HOCKING, G. C. and FARROW, D. E.; Dispersal of hydrogen in the retina—a three-layer model 1

MCCAW, J. M. and PLANK, M. J.; The role of the mathematical sciences in supporting the COVID-19 response in Australia and New Zealand 315

MEYLAN, M. H.; see TRAN-DUC, T. 355

MORADI, A., ABDI, A. and HOJJATI, G.; High order explicit second derivative methods with strong stability properties based on Taylor series conditions 264

MORADI, A.; see RAMAZANI, P. 69

NANAYAKKARA, R.; see BROADBRIDGE, P. 90

NAZARATHY, Y.; see ASANJARANI, A. 54

OLENKO, A., see BROADBRIDGE, P. 90

PLANK, M. J.; see MCCAW, J. M. 315

RAMAZANI, P. , ABDI, A., HOJJATI, G. and MORADI, A.; Explicit Nordsieck second derivative general linear methods for ODEs 69

SHAIKHET, L. and ABBAS, S.; Novel stability conditions for some generalization of Nicholson’s blowflies model with stochastic perturbations 394

SHAW-CARMODY, J. A.; see LAMICHHANE, B. P. 205

SOUHAR, O.; see FARHANE, M. 40

THAMWATTANA, N.; see TRAN-DUC, T. 355

TRAN-DUC, T., MEYLAN, M. H. and THAMWATTANA, N.; Numerical simulations for largely deformed beams and rings adopting a nontensile smoothed particle hydrodynamics algorithm 355

TURNER, R. J.; see WALTERS, S. J. 227

VERMA, V.; see JAIN, E. 183

WALTERS, S. J., TURNER, R. J. and FORBES, L. K.; A comparison of explicit Runge–Kutta methods 227

WALTERS, S. J.; see FORBES, L. K. 149