Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:13:53.601Z Has data issue: false hasContentIssue false

Independent non-identical five-parameter gamma-Weibull variates and their sums

Published online by Cambridge University Press:  17 February 2009

Roy B. Leipnik
Affiliation:
Mathematics Department, UCSB, Ca 93106–3080, USA; e-mail: [email protected].
Charles E. M. Pearce
Affiliation:
School of Mathematics, The University of Adelaide, SA 5005, Australia; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-Weibull variates with five parameters are defined by multiplication of gamma and Weibull densities and renormalising. Sums of independent such variates are distributed as combinations of products of gammas and confluent hypergeometric functions and are explicitly determined. Sums of independent non-identical Weibulls arise as a special case. These variates can be used to model moderately extreme scenarios between gamma and Weibull that occur in many natural applications. All results are exact.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Balakrishnan, N. and Leung, M. Y., “Order statistics from the type I generalized logistic distribution”, Comm. Stat. Simulation Comput. 17 (1988)2550.CrossRefGoogle Scholar
[2]Beran, M., Hosking, J. R. M. and Arnell, N., “Comment on ‘Two-component extreme value distribution for flood frequency analysis’ by Fabio Rossi, Mauro Fiorentino and Pasquale Versace”, Water Resources Res. 22 (1986) 263266.CrossRefGoogle Scholar
[3]David, H. A., Order statistics, 2nd ed. (Wiley, New York, 1981).Google Scholar
[4]Davidenkov, N., Shevandin, E. and Wittman, F., “The influence of size onthe brittle strength of steel”, J. Appl. Mech. 14 (1947) A6367.CrossRefGoogle Scholar
[5]Dodd, E. L., “The greatest and least variate under general laws of least error”, Trans. Amer Math. Soc. 25 (1923) 525539.CrossRefGoogle Scholar
[6]Eggwertz, S. and Lind, N. C. (eds.), Probabilistic methods in the mechanics of solids and structures (Springer, Berlin, 1985).CrossRefGoogle Scholar
[7]Epstein, B., “Applications of extreme value theory to problems of material behavior”, in Probabilistic methods in the mechanics of solids and structures (eds. Eggwertz, S. and Lind, N. C.), (Springer, Berlin, 1985) 39.CrossRefGoogle Scholar
[8]Fisher, J. C. and Hollomon, J. H., “A statistical theory of fracture”, Trans. Amer Inst. Mining Metall. Eng. 171 (1947) 546561.Google Scholar
[9]Fisher, R. A. and Tippett, L. H. C., “Limiting forms of the distribution of the largest or smallest member of a sample”, Proc. Camb. Phil. Soc. 24 (1928)180190.CrossRefGoogle Scholar
[10]Fréchet, M., “Sur la loi de probabilité de l'écart maximum”, Ann. de la Soc. de Math. (Cracow) 6 (1927) 92116.Google Scholar
[11]Frenkel, J. I. and Kontorova, T. A., “Statistical theory of brittle strength of real crystals”, Zh. Tekhnich. Fiz. 11 (1941) 173183, (Russian).Google Scholar
[12]Freudenthal, A. M., “The statistical aspect of fatigue of materials”, Proc. Roy. Soc. London A 187 (1946) 416429.Google Scholar
[13]Galambos, J., The asymptotic theory of extreme order statistics (Wiley, New York, 1958).Google Scholar
[14]Gnedenko, B., “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. Math. 44 (1943) 423453.CrossRefGoogle Scholar
[15]Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, 5th ed. (Academic Press, San Diego, 1994).Google Scholar
[16]Griffith, A. A., “The phenomena of rupture and flow in solids”, Phil. Trans Roy. Soc. A 221 (1920)163198.Google Scholar
[17]Gumbel, E. J., Statistics of extremes (Columbia Univ. Press, New York, 1958).CrossRefGoogle Scholar
[18]Kontorova, T. A., “Statistical theory of strength”, Zh. Tekhnich. Fiz. 10 (1940) 886890, (Russian).Google Scholar
[19]Kotz, S. and Nadarajah, S., Extreme value distributions (Imperial College Press, London, 2000).CrossRefGoogle Scholar
[20]Leadbetter, M. R., Lindgren, G. and Rootzén, H., Extremes and related properties of random sequences and processes (Springer, New York, 1982).Google Scholar
[21]Leipnik, R. B., “Concurrent catastrophes: the sum of two independent Gumbels”, C. R. Math. Rep. Acad. Sci. Canada 20 (1998) 6570.Google Scholar
[22]Peirce, F. T., “Tensile tests for cotton yarns v. ‘The weakest link’— theorems on the strength of long and composite specimens”, J. Textile Inst. 17 (1926) 355368.Google Scholar
[23]Rossi, F., Fiorentino, M. and Versace, P., “Two-component extreme value distribution for flood frequency analysis”, Water Resources Res. 20 (1984) 847856.CrossRefGoogle Scholar
[24]Rossi, F., Fiorentino, M. and Versace, P., “Reply”, Water Resources Res. 22 (1986) 267269.CrossRefGoogle Scholar
[25]Von Mises, R., “La distribution de la plus grande de n valeurs”, Rev. Math. Union Interbalkanique 1 (1936) 141160.Google Scholar
[26]Weibull, W., “The phenomenon of rupture in solids”, Ing. Vetenskaps Akad. Handl. 153 (1939).Google Scholar
[27]Weibull, W., “A statistical theory of the strength of materials”, Ing. Vetenskaps Akad. Handl. 151 (1939).Google Scholar