Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T00:48:00.128Z Has data issue: false hasContentIssue false

Exclusion regions for eigenvalues of linear operators

Published online by Cambridge University Press:  17 February 2009

Stephen C. Hennagin
Affiliation:
Department of Mathematics, St. Mary's College, Moraga, California, U.S.A.
Peter Linz
Affiliation:
Department of Mathematics, University of California, Davis, California, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quesiton of the location of the eigenvalues of a linear operator is considered. In particular, a numerical technique is developed which can be used to demonstrate the absence of eigenvalues in certain segements of the real line.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Anselone, P. M., Collectively compact operator approximation theory (Prentice-Hall, Englewood Cliffs, N.J., 1971).Google Scholar
[2]Atkinson, K. E., “Convergence rates for approximate eigenvalues of compact integral operators”, SIAM J. Numer. Anal. 12 (1975), 213221.Google Scholar
[3]Brakhage, H., “Zur Fehlerabschätzung für die numerische Eigenwertbestimmung bei Integralgleichungen”, Numer. Math. 3 (1961), 174179.CrossRefGoogle Scholar
[4]Chatelin, F., “Convergence of approximation methods to compute eigenelements of linear operations”, SIAM J. Numer. Anal. 10 (1973), 939948.CrossRefGoogle Scholar
[5]Grigorieff, R. D., “Diskrete Approximation von Eigenwertproblemen I. Qualitative Konvergenz”, Numer. Math. 24 (1975), 335374. II.CrossRefGoogle Scholar
Konvergenzordnung”, Numer. Math. 24 (1975), 415433.Google Scholar
[6]Hennagin, S. C.. Ph.D. Dissertation, University of California at Davis, 1979.Google Scholar
[7]Hubbard, B. E., “Bounds for eigenvalues of the Sturm-Liouville problem by finite difference methods”, Arch. Rat. Mech. Anal. 10 (1962), 171179.Google Scholar
[8]Keller, H. B., “On the accuracy of finite difference approximations to the eigenvalues of differential and integral operators”, Numer. Math. 7 (1965), 412419.CrossRefGoogle Scholar
[9]Kuttler, J. R., “Upper and lower bounds for eigenvalues by finite differences”, Pac. J. Math. 35 (1970), 429440.Google Scholar
[10]Linz, P., “Error estimates for the computation of eigenvalues of self-adjoint operators”, BIT 12 (1972), 528533.CrossRefGoogle Scholar
[11]Linz, P., Theoretical numerical analysis (Wiley-Interscience, New York, 1979).Google Scholar
[12]Spence, A., “On the convergence of the Nyström method for the integral equation eigenvalue problem”, Numer. Math. 25 (1975), 5766.Google Scholar
[13]Weinberger, H. F., “Upper and lower bounds for eigenvalues by finite difference methods”, Comm. Pure Appl. Math. 9 (1956), 613623.CrossRefGoogle Scholar
[14]Wendroff, B., “Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method”, Math. Comp. 19 (1965), 218224.Google Scholar
[15]Wielandt, H., “Error bounds for eigenvalues of symmetric integral equations”, Proc. Symp. Appl. Math., Vol. 6 (Amer. Math. Soc., 1956), pp. 261282.CrossRefGoogle Scholar