No CrossRef data available.
Published online by Cambridge University Press: 17 February 2009
A class of evolution equations in divergence form is studied in this paper. Specifically, we develop conditions under which the spatial divergence term, the flux, corresponds to the characteristic of a conservation law. The KdV equation is a prominent example of an equation having a flux term that is also a characteristic for a conservation law. We show that the flux term must be self-adjoint. General equations for the corresponding conservation laws and Hamiltonian densities are derived and supplemented with examples. 2000 Mathematics subject classification: primary 35K.