Article contents
EFFECT OF INITIAL STRESSES ON INCIDENT qSV-WAVES IN PRE-STRESSED ELASTIC HALF-SPACES
Part of:
Elastic materials
Published online by Cambridge University Press: 20 March 2012
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The effect of initial stresses on incident quasi SV-waves at a plane interface between two dissimilar pre-stressed elastic half-spaces is investigated. The reflection and refraction coefficients of the reflected and refracted qSV- and qP-waves are derived with the help of appropriate boundary conditions. The coefficients are found to be functions of the angle of incidence and the initial stresses and incremental elastic parameters of the pre-stressed elastic half-spaces.
MSC classification
Secondary:
74B05: Classical linear elasticity
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2012
References
[1]Abd-alla, A. N. and Alsheikh, F. A., “Reflection and refraction of plane quasilongitudinal waves at an interface of two piezoelectric media under initial stresses”, Arch. Appl. Mech. 79 (2009) 843–857; doi:10.1007/s00419-008-0257-y.CrossRefGoogle Scholar
[2]Acharya, H. K., “Reflection from the free surface of an inhomogeneous media”, Bull. Seismol. Soc. Amer. 60 (1970) 1101–1104.CrossRefGoogle Scholar
[3]Achenbach, J. D., Wave propagation in elastic solids (North-Holland, New York, 1973).Google Scholar
[4]Babich, S. Yu., “Propagation of surface waves in a prestressed medium”, Int. Appl. Mech. 14 (1978) 1004–1007; doi:10.1007/BF00885757.Google Scholar
[5]Biot, M. A., “The influence of initial stress on elastic waves”, J. Appl. Phys. 11 (1940) 522–530; doi:10.1063/1.1712807.CrossRefGoogle Scholar
[6]Biot, M. A., Mechanics of incremental deformations (John Wiley, New York, 1965).CrossRefGoogle Scholar
[7]Chattopadhyay, A., Bose, S. and Chakraborty, M., “Reflection of elastic waves under initial stress at a free surface: P and SV motion”, J. Acoust. Soc. Am. 72 (1982) 255–263; doi:10.1121/1.387987.CrossRefGoogle Scholar
[8]Dowaikh, M. A. and Ogden, R. W., “Interfacial waves and deformations in pre-stressed elastic media”, Proc. R. Soc. Lond. A 433 (1991) 313–328; doi:10.1098/rspa.1991.0050.Google Scholar
[9]Du, J., Jin, X. and Wang, J., “Love wave propagation in layered magneto-electro-elastic structures with initial stress”, Acta Mech. 192 (2007) 169–189; doi:10.1007/s00707-006-0435-3.CrossRefGoogle Scholar
[10]Garg, N., “Existence of longitudinal waves in pre-stressed anisotropic elastic medium”, J. Earth Syst. Sci. 118 (2009) 677–687; doi:10.1007/s12040-009-0053-2.CrossRefGoogle Scholar
[11]Guz, A. N., “Elastic waves in bodies with initial (residual) stresses”, Int. Appl. Mech. 38 (2002) 23–59; doi:10.1023/A:1015379824503.CrossRefGoogle Scholar
[12]Khurana, P. and Vashisth, A. K., “Love wave propagation in a pre-stressed medium”, Indian J. Pure Appl. Math. 32 (2001) 1201–1207.Google Scholar
[13]Norris, A. N., “Propagation of plane waves in a pre-stressed elastic medium”, J. Acoust. Soc. Am. 74 (1983) 1642–1643; doi:10.1121/1.390131.CrossRefGoogle Scholar
[14]Ogden, R. W. and Sotiropoulos, D. A., “On interfacial waves in pre-stressed layered incompressible elastic solids”, Proc. R. Soc. Lond. A 450 (1995) 319–341; doi:10.1098/rspa.1995.0087.Google Scholar
[15]Sharma, M. D., “Effect of initial stress on reflection at the free surface of anisotropic elastic medium”, J. Earth Syst. Sci. 116 (2007) 537–551; doi:10.1007/s12040-007-0049-8.CrossRefGoogle Scholar
[16]Sidhu, R. S. and Singh, S. J., “Comments on reflection of elastic waves under initial stress at a free surface: P and SV motion (J. Acoust. Soc. Am. 72, 255–263 (1982))”, J. Acoust. Soc. Am. 74 (1983) 1640–1642; doi:10.1121/1.390130.CrossRefGoogle Scholar
[17]Sidhu, R. S. and Singh, S. J., “Reflection of P and SV waves at the free surface of a prestressed elastic half-space”, J. Acoust. Soc. Am. 76 (1984) 594–598; doi:10.1121/1.391155.CrossRefGoogle Scholar
[18]Sidhu, R. S. and Singh, S. J., “On the existence of quasi S waves in a prestressed elastic solid”, J. Acoust. Soc. Am. 78 (1985) 803–804; doi:10.1121/1.392400.CrossRefGoogle Scholar
[19]Singh, B., “Wave propagation in a prestressed piezoelectric half-space”, Acta Mech. 211 (2010) 337–344; doi:10.1007/s00707-009-0234-8.CrossRefGoogle Scholar
[20]Singh, S. J. and Khurana, S., “Reflection and transmission of P and SV waves at the interface between monoclinic elastic half-spaces”, Proc. Natl. Acad. Sci. India A 71 (2001) 305–319.Google Scholar
[21]Singh, S. J. and Khurana, S., “Reflection of P and SV waves at the free surface of a monoclinic elastic half-space”, Proc. Indian Acad. Sci. 111 (2002) 401–412.Google Scholar
[22]Singh, I., Madan, D. K. and Gupta, M., “Propagation of elastic waves in prestressed media”, J. Appl. Math. (2010) Article ID 817680; doi:10.1155/2010/817680.CrossRefGoogle Scholar
[23]Singh, S. S. and Tomar, S. K., “qP-wave at a corrugated interface between two dissimilar prestressed elastic half-spaces”, J. Sound Vib. 317 (2008) 687–708; doi:10.1016/j.jsv.2008.03.036.CrossRefGoogle Scholar
[24]Ting, T. C. T., “Longitudinal and transverse waves in anisotropic elastic materials”, Acta Mech. 185 (2006) 147–164; doi:10.1007/s00707-006-0333-8.CrossRefGoogle Scholar
You have
Access
- 6
- Cited by