Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T22:35:26.890Z Has data issue: false hasContentIssue false

Dilaton black holes with a cosmological term

Published online by Cambridge University Press:  17 February 2009

David L. Wiltshire
Affiliation:
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia 5005, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The properties of static spherically symmetric black holes, which carry electric and magnetic charges, and which are coupled to the dilaton in the presence of a cosmological constant, A, are reviewed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Aspinwall, P. S., Greene, B. R. and Morrison, D. R., “Calabi-Yau modul space, mirror manifolds and space-time topology change in string theory”, Nucl. Phys. B416 (1994) 414480.CrossRefGoogle Scholar
[2]Chan, K. C. K., Horne, J. H. and Mann, R. B., “Charged dilaton black holes with unusual asymptotics”, Nucl. Phys. B447 (1995) 441464.CrossRefGoogle Scholar
[3]Cho, Y. M., “Reinterpretation of Jordan-Brans-Dicke theory and Kaluza-Klein cosmology”, Phys. Rev. Lett. 68 (1992) 31333136.CrossRefGoogle ScholarPubMed
[4]Damour, T. and Polyakov, A. M., “The string dilaton and a least coupling principle”, Nucl. Phys. B423 (1994) 532558.CrossRefGoogle Scholar
[5]Derendinger, J. P., Ibáñez, L. E. and Nilles, H. P., “On the low energy d = 4, N = 1 supergravity theory extracted from the d = 10, N = 1 superstring”, Phys. Lett. 155B (1985) 6570.CrossRefGoogle Scholar
[6]Dine, M., Rohm, R., Seiberg, N. and Witten, E., “Gluino condensation in superstring models”, Phys. Lett. 156B (1985) 5560.CrossRefGoogle Scholar
[7]Dobiasch, P. and Maison, D., “Stationary, spherically symmetric solutions of Jordan's unified theory of gravity and electromagnetism”, Gen. Relativ. Grav. 14 (1982) 231242.CrossRefGoogle Scholar
[8]Dowker, H. F., Gauntlett, J. P., Giddings, S. B. and Horowitz, G. T., “On pair creation of extremal black holes and Kaluza-Klein monopoles”, Phys. Rev. D50 (1994) 26622679.Google ScholarPubMed
[9]Dowker, H. F., Gauntlett, J. P., Kastor, D. A. and Traschen, J., “Pair creation of dilaton black holes”, Phys. Rev. D49 (1994) 29092917.Google ScholarPubMed
[10]Garfinkle, D., Horowitz, G. T. and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D43 (1991) 31403143; erratum: D45 (1992) 3888.Google ScholarPubMed
[11]Gibbons, G. W., “Antigravitating black hole solitons with scalar hair in N = 4 supergravity”, Nucl. Phys. B207 (1982) 337349.CrossRefGoogle Scholar
[12]Gibbons, G. W., Horowitz, G. T. and Townsend, P. K., “Higher-dimensional resolution of dilatonic black hole singularities”, Class. Quantum Grav. 12 (1995) 297317.CrossRefGoogle Scholar
[13]Gibbons, G. W. and Kallosh, R. E., “Topology, entropy and witten index of dilaton black holes”, Phys. Rev. D51 (1995) 28392862.Google ScholarPubMed
[14]Gibbons, G. W. and Maeda, K., “Black holes and membranes in higher dimensional theories with dilaton fields”, Nucl. Phys. B298 (1988) 741775.CrossRefGoogle Scholar
[15]Gibbons, G. W. and Wiltshire, D.L., “Black holes in Kaluza-Klein theory”, Ann. Phys. (N.Y.) 167 (1986) 201223; erratum: 176 (1987) 393.CrossRefGoogle Scholar
[16]Green, M. B., Schwarz, J. H. and Witten, E., Superstring theory (Cambridge University Press, 1987).Google Scholar
[17]Greene, B. R., Morrison, D. R. and Strominger, A., “Black hole condensation and the unification of string vacua”, Nucl. Phys. B451 (1995) 109120.CrossRefGoogle Scholar
[18]Gregory, R. and Harvey, J. A., “Black holes with a massive dilaton”, Phys. Rev. D47 (1993) 24112422.Google ScholarPubMed
[19]Gross, D. J. and Perry, M. J., “Magnetic monopoles in Kaluza-Klein theories”, Nucl. Phys. B226 (1983) 2948.CrossRefGoogle Scholar
[20]Hawking, S. W., Horowitz, G. T. and Ross, S. F., “Entropy, area and black hole pairs”, Phys. Rev. D51 (1995) 43024314.Google ScholarPubMed
[21]Holzhey, C. F. E. and Wilczek, F., “Black holes as elementary particles”, Nucl. Phys. B380 (1992) 447477.CrossRefGoogle Scholar
[22]Horne, J. H. and Horowitz, G. T., “Black holes coupled to a massive dilaton”, Nucl. Phys. B399 (1993) 169196.CrossRefGoogle Scholar
[23]Horne, J. H. and Horowitz, G. T., “Cosmic censorship and the dilaton”, Phys. Rev. D48 (1993) R5457R5462.Google ScholarPubMed
[24]Kastor, D. and Traschen, J., “Cosmological multi-black hole solutions”, Phys. Rev. D47 (1993) 53705375.Google ScholarPubMed
[25]Magnano, G. and Sokotowski, L. M., “On physical equivalence between nonlinear gravity theories and a general-relativistic scalar field”, Phys. Rev. D50 (1994) 50395059.Google Scholar
[26]Maki, T. and Shiraishi, K., “Multi black hole solutions in cosmological Einstein-Maxwell-dilaton theory”, Class. Quantum Grav. 10 (1993) 21712178.CrossRefGoogle Scholar
[27]Mignemi, S. and Wiltshire, D. L., “Spherically symmetric solutions in dimensionally reduced spacetimes”, Class. Quantum Grav. 6 (1989) 9871002.CrossRefGoogle Scholar
[28]Mignemi, S. and Wiltshire, D. L., “Black holes in higher derivative gravity theories”, Phys. Rev. D46(1992) 14751506.Google ScholarPubMed
[29]Okai, T., “4-dimensional dilaton black holes with cosmological constant”, Preprint UT-679 hepth/9406126, 1994.Google Scholar
[30]Poletti, S. J., Twamley, J. and Wiltshire, D. L., “Charged dilaton black holes with a cosmological constant”, Phys. Rev. D51 (1995) 57205724.Google ScholarPubMed
[31]Poletti, S. J., Twamley, J. and Wiltshire, D. L., “Dyonic dilaton black holes”, Class. Quantum Grav. 12 (1995) 17531769; erratum: 12 (1995) 2355.CrossRefGoogle Scholar
[32]Poletti, S. J. and Wiltshire, D. L., “Global properties of static spherically symmetric spacetimes with a Liouville potential”, Phys. Rev. D50 (1994) 72607270; erratum: D52 (1995) 3753–3754.Google ScholarPubMed
[33]Ross, S. F., “Pair production of black holes in a U(1) × U(1) theory”, Phys. Rev. D49 (1994) 65996605.Google Scholar
[34]Sokolowski, L. M., “Uniqueness of the metric line element in dimensionally reduced theories”, Class. Quantum Grav. 6 (1989) 5976.CrossRefGoogle Scholar
[35]Sokolowski, L. M., “Physical versions of non-linear gravity theories and positivity of energy”, Class. Quantum Grav. 6 (1989) 20452050.CrossRefGoogle Scholar
[36]Sorkin, R. D., “Kaluza-Klein monopole”, Phys. Rev. Lett. 51 (1983) 8790; erratum: 54 (1985) 86.CrossRefGoogle Scholar
[37]Strominger, A., “Massless black holes and conifolds in string theory”, Nucl. Phys. B451 (1995) 96108.CrossRefGoogle Scholar
[38]'t Hooft, G., “Strings from gravity”, Phys. Scr. T15 (1987) 143150.CrossRefGoogle Scholar
[39]'t Hooft, G., “The black hole interpretation of string theory”, Nucl. Phys. B335 (1990) 138154.CrossRefGoogle Scholar
[40]Tseytlin, A., “Exact solutions of closed string theory”, Class. Quantum Grav. 12 (1995) 23652410.CrossRefGoogle Scholar
[41]Wiltshire, D. L., “Spherically symmetric solutions in dimensionally reduced spacetimes with a higher-dimensional cosmological constant”, Phys. Rev. D44 (1991) 11001114.Google ScholarPubMed