Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T15:18:33.610Z Has data issue: false hasContentIssue false

Concentric circular misfit and a circular arc crack in an infinite isotropic elastic plate

Published online by Cambridge University Press:  17 February 2009

R. D. Bhargava
Affiliation:
Department of Mathematics, Indian Institute of Technology, Bombay – 76, India.
Ram Narayan
Affiliation:
Department of Mathematics, Indian Institute of Technology, Bombay – 76, India.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A homogeneous isotropic infinite elastic plate contains a circular cavity and a circular arc crack symmetrically situated about the x-axis. The cavity and crack are concentric but are of different radii. A circular inhomogeneity of radius slightly larger than that of the cavity is inserted into the cavity; thus generating a system of stresses in the outer material as well as in the inhomogeneity. The elastic field in the inhomogeneity and in the outer material outside the inhomogeneity is evaluated in this paper.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

[1]Williams, M. L., J. Appl. Mech., 24 (1957).Google Scholar
[2]Williams, M. L., J. Appl. Mech., 28 (1961).CrossRefGoogle Scholar
[3]Erdogan, F., J. Appl. Mech., 30 (1963).Google Scholar
[4]Sih, G. C. and Rice, J. R., J. Appl. Mech., 31 (1964).Google Scholar
[5]Tamate, O., Technology Reports, Tohoku University, 30 (1965).Google Scholar
[6]Knauss, W. G., J. Appl. Mech., 33 (1966).Google Scholar
[7]Tamate, O., Ing. Archiv., 35 (1967).CrossRefGoogle Scholar
[8]Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity, (P. Noordhoff, Groningen, 1953).Google Scholar
[9]England, A. H., J. Appl. Mech., 33 (1966).CrossRefGoogle Scholar
[10]Frenkel, J., Kinetic theory of liquids, (Oxford 1946).Google Scholar
[11]Mott, N. F. and Nabarro, F. R. N., Proc. Phys. Soc. 52 (1940).CrossRefGoogle Scholar
[12]Eshelby, J. D., Proc. Roy. Soc. London, Ser. A241 (1957) J. D. Eshelby, Proc. Roy. Soc. London, 252 (1959).Google Scholar
[13]Jaswon, M. A. and Bhargava, R. D., Proc. Camb. Phil. Soc. 57 (1961).CrossRefGoogle Scholar
[14]Atkinson, C., Int. J. Engg. Sc. 4 (1969).Google Scholar
[15]Tamate, O., Int. J. Frac. Mech., 4 (1968).Google Scholar
[16]Bhargava, R. D. and Bhargava, R. R., Int. J. Engg. Sc. 11 (1973).Google Scholar
[17]Sih, G. C., Paris, P. C. and Erdogan, F., J. Appl. Mech. 29 (1962).Google Scholar
[18]Love, A. E. H., A treatise on the mathematical theory of elasticity, (Cambridge, 1952).Google Scholar