Article contents
COMPONENTS AND PHASES: MODELLING PROGRESSIVE HYDROTHERMAL ERUPTIONS
Published online by Cambridge University Press: 03 November 2009
Abstract
This is a review of progress made since [R. McKibbin, “An attempt at modelling hydrothermal eruptions”, Proc. 11th New Zealand Geothermal Workshop 1989 (University of Auckland, 1989), 267–273] began development of a mathematical model for progressive hydrothermal eruptions (as distinct from “blasts”). Early work concentrated on modelling the underground process, while lately some attempts have been made to model the eruption jet and the flight and deposit of ejected material. Conceptually, the model is that of a boiling and expanding two-phase fluid rising through porous rock near the ground surface, with a vertical high-speed jet, dominated volumetrically by the gas phase, ejecting rock particles that are then deposited on the ground near the eruption site. Field observations of eruptions in progress and experimental results from a laboratory-sized model have confirmed the conceptual model. The quantitative models for all parts of the process are based on the fundamental conservation equations of motion and thermodynamics, using a continuum approximation for each of the components.
MSC classification
- Type
- Research Article
- Information
- The ANZIAM Journal , Volume 50 , Issue 3: This Special Issue is dedicated to Dr Stephen White , January 2009 , pp. 365 - 380
- Copyright
- Copyright © Australian Mathematical Society 2009
References
- 8
- Cited by