Published online by Cambridge University Press: 01 October 2008
An analysis is developed for the behaviour of a cloud of cavitation bubbles during both the growth and collapse phases. The theory is based on a multipole method exploiting a modified variational principle developed by Miles [“Nonlinear surface waves in closed basins”, J. Fluid Mech.75 (1976) 418–448] for water waves. Calculations record that bubbles grow approximately spherically, but that a staggered collapse ensues, with the outermost bubbles in the cloud collapsing first of all, leading to a cascade of bubble collapses with very high pressures developed near the cloud centroid. A more complex phenomenon occurs for bubbles of variable radius with local zones of collapse, with a complex frequency spectrum associated with each individual bubble, leading to both local and global collective behaviour.