Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:34:13.819Z Has data issue: false hasContentIssue false

ASYMPTOTIC BEHAVIOUR OF THE STOCHASTIC MAKI–THOMPSON MODEL WITH A FORGETTING MECHANISM ON OPEN POPULATIONS

Published online by Cambridge University Press:  06 November 2020

HAIJIAO LI
Affiliation:
School of Business Administration, Hunan University, Hunan, China; e-mail: [email protected] and [email protected].
KUAN YANG
Affiliation:
School of Business Administration, Hunan University, Hunan, China; e-mail: [email protected] and [email protected].

Abstract

Rumours have become part of our daily lives, and their spread has a negative impact on a variety of human affairs. Therefore, how to control the spread of rumours is an important topic. In this paper, we extend the classic Maki–Thompson model from a deterministic framework to a stochastic framework with a forgetting mechanism, because real-world person-to-person communications are inevitably affected by random factors. By constructing suitable stochastic Lyapunov functions, we show that the asymptotic behaviour of the stochastic rumour model is governed by the basic reproductive number. If this number is less than one, then the solution of the stochastic rumour model oscillates around the rumour-free equilibrium under extra mild conditions, indicating the extinction of the rumour with a probability of one. Otherwise, the solution always fluctuates around the endemic equilibrium under certain parametric restrictions, implying that the rumour will continually persist. In addition, we discuss a possible intervention strategy that stops the spread of rumours by strengthening the intensity of white noise, which is very different from the deterministic rumour model without white noise. Also, numerical simulations are conducted to support our analytical results.

Type
Research Article
Copyright
© Australian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belen, S., Kaya, C. Y. and Pearce, C. E. M., “Impulsive control of rumours with two broadcasts”, ANZIAM J. 46 (2005) 379391; doi:10.1017/S1446181100008324.CrossRefGoogle Scholar
Belen, S. and Pearce, C. E. M., “Rumours with general initial conditions”, ANZIAM J. 45 (2004) 393400; doi:10.1017/S1446181100013444.CrossRefGoogle Scholar
Daley, D. J. and Kendall, D. G., “Stochastic rumours”, IMA J. Appl. Math. 1 (1965) 4255; doi:10.1093/imamat/1.1.42.CrossRefGoogle Scholar
Dauhoo, M. Z., Juggurnath, D. and Adam, N. B., “The stochastic evolution of rumors within a population”, Math. Soc. Sci. 82 (2016) 8596; doi:10.1016/j.mathsocsci.2016.05.002.CrossRefGoogle Scholar
Driessche, P. and Watmough, J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Math. Biosci. 180 (2002) 2948; doi:10.1016/S0025-5564(02)00108-6.CrossRefGoogle ScholarPubMed
Gikhman, I. I. and Skorokhod, A. V., Stochastic differential equations (Springer, Berlin, 1972); doi:10.1007/978-3-540-49941-1.CrossRefGoogle Scholar
Hayakawa, H., Sociology of rumor-approach from formal sociology (Aoyuma Seikyusya, Tokyo, Japan, 2002).Google Scholar
Higham, D. J., “An algorithmic introduction to numerical simulation of stochastic differential equations”, SIAM Rev. 43 (2001) 525546; doi:10.1137/S0036144500378302.CrossRefGoogle Scholar
Huo, L. A., Huang, P. Q. and Guo, C. X., “Analyzing the dynamics of a rumor transmission model with incubation”, Discrete Dyn. Nat. Soc. 2012 (2012) 121; doi:10.1155/2012/328151.Google Scholar
Huo, L. A., Jiang, J. H., Gong, S. X. and He, B., “Dynamical behavior of a rumour transmission model with Holling-type II functional response in emergency event”, Physica A 450 (2016) 228240; doi:10.1016/j.physa.2015.12.143.CrossRefGoogle Scholar
Huo, L. A. and Song, N., “Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency”, Physica A 461 (2016) 7384; doi:10.1016/j.physa.2016.05.028.CrossRefGoogle Scholar
Imhof, L. and Walcher, S., “Exclusion and persistence in deterministic and stochastic chemostat models”, J. Differential Equations 217 (2005) 2653; doi:10.1016/j.jde.2005.06.017.CrossRefGoogle Scholar
Jain, A., Dhar, J. and Gupta, V., “Stochastic model of rumor propagation dynamics on homogeneous social network with expert interaction and fluctuations in contact transmissions”, Physica A 519 (2019) 227236; doi:10.1016/j.physa.2018.11.051.CrossRefGoogle Scholar
Jia, F. J. and Lv, G. Y., “Dynamic analysis of a stochastic rumor propagation model”, Physica A 490 (2018) 613623; doi:10.1016/j.physa.2017.08.125.CrossRefGoogle Scholar
Jia, F. J., Lv, G. Y. and Zou, G. A., “Dynamic analysis of a rumor propagation model with Lévy noise”, Math. Methods Appl. Sci. 41 (2018) 16611673; doi:10.1002/mma.4694.CrossRefGoogle Scholar
Jiang, D. Q., Yu, J. J., Ji, C. Y. and Shi, N. Z., “Asymptotic behavior of global positive solution to a stochastic SIR model”, Math. Comput. Model. 54 (2011) 221232; doi:10.1016/j.mcm.2011.02.004.CrossRefGoogle Scholar
Maki, D. P. and Thompson, M., Mathematical models and applications: With emphasis on the social life, and management sciences (Prentice-Hall, Englewood Cliffs, NJ, 1973).Google Scholar
Mao, X. D., Stochastic differential equations and applications (Chichester, UK, 2007).Google Scholar
Mao, X. D., Yuan, C. G. and Zou, J. Z., “Stochastic differential delay equations of population dynamics”, J. Math. Anal. Appl. 304 (2005) 296320; doi:10.1016/j.jmaa.2004.09.027.CrossRefGoogle Scholar
Méndez, V., Campos, D. and Horsthemke, W., “Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model”, Phys. Rev. E 86 (2012) 011919; doi:10.1103/PhysRevE.86.011919.CrossRefGoogle ScholarPubMed
Nekovee, M., Moreno, Y., Bianconi, G. and Marsili, M., “Theory of rumour spreading in complex social networks”, Physica A 374 (2007) 457470; doi:10.1016/j.physa.2006.07.017.CrossRefGoogle Scholar
Pearce, C. E. M, “The exact solution of the general stochastic rumour”, Math. Comput. Model. 31 (2000) 289298; doi:10.1016/S0895-7177(00)00098-4.CrossRefGoogle Scholar
Perice, G. A., “Rumors and politics in Haiti”, Anthropol. Q. 70 (1997) 110; doi:10.2307/3317797.CrossRefGoogle Scholar
Simon, M. K., Probability distributions involving Gaussian random variables: A handbook for engineers and scientists (Springer, Berlin, Heidelberg, 2007).Google Scholar
Stephanopoulos, G., Aris, R. and Fredrickson, A. G., “A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor”, Math. Biosci. 45 (1979) 99135; doi:10.1016/0025-5564(79)90098-1.CrossRefGoogle Scholar
Stratonovich, R. L., “A new representation for stochastic integrals and equations”, SIAM J. Control 4 (1966) 362371; doi:10.1137/0304028.CrossRefGoogle Scholar
Šuvakov, M., Mitrović, M., Gligorijević, V. and Tadić, B., “How the online social networks are used: dialogues-based structure of MySpace”, J. R. Soc. Interface 10 (2013) Id 20120819; doi:10.1098/rsif.2012.0819.CrossRefGoogle ScholarPubMed
Tang, Y., Yuan, R. S., Wang, G. W., Zhu, X. M. and Ao, P., “Potential landscape of high dimensional nonlinear stochastic dynamics with large noise”, Sci. Rep. 7 (2017) 111; doi:10.1038/s41598-017-15889-2.CrossRefGoogle ScholarPubMed
Thompson, K., Castro, R. C., Daugherty, D. and Cintron-Arias, A., “A deterministic approach to the spread of rumors”, Biometrics Unit Technical Reports BU-1642-M, 2003; https://ecommons.cornell.edu/bitstream/handle/1813/32243/BU-1642-M.pdf.Google Scholar
Turelli, M., “Random environments and stochastic calculus”, Theor. Popul. Biol. 12 (1977) 140178; doi:10.1016/0040-5809(77)90040-5.CrossRefGoogle ScholarPubMed
Wang, Y., Vasilakos, A.V., Ma, J. and Xiong, N., “On studying the impact of uncertainty on behavior diffusion in social networks”, IEEE Trans. Syst. Man Cybern. Syst. 45 (2014) 185197; doi:10.1109/TSMC.2014.2359857.CrossRefGoogle Scholar
Wong, E. and Zakai, M., “On the convergence of ordinary integrals to stochastic integrals”, Ann. Math. Statist. 36 (1965) 15601564; https://www.jstor.org/stable/2238444.CrossRefGoogle Scholar
Yao, Y., Xiao, X., Zhang, C. P., Dou, C. S. and Xia, S. T., “Stability analysis of an SDILR model based on rumor recurrence on social media”, Physica A 535 (2019) 122236; doi:10.1016/j.physa.2019.122236.CrossRefGoogle Scholar
Yuan, R. S. and Ao, P., “Beyond Ito versus Stratonovich”, J. Stat. Mech. Theory Exp. 7 (2012) P07010; doi:10.1088/1742-5468/2012/07/P07010.Google Scholar
Zhao, L. J., Wang, J. J., Chen, Y. C., Wang, Q., Cheng, J. J. and Cui, H. X., “SIHR rumor spreading model in social networks”, Physica A 391 (2012) 24442453; doi:10.1016/j.physa.2011.12.008.CrossRefGoogle Scholar
Zhao, L. J., Wang, J. J. and Huang, R. B., “Immunization against the spread of rumors in homogenous networks”, PLoS ONE 10 (2015) 185197; doi:10.1371/journal.pone.0124978.Google ScholarPubMed
Zhou, Y. L., Zhang, W. G. and Yuan, S. L., “Survival and stationary distribution of a SIR epidemic model with stochastic perturbations”, Appl. Math. Comput. 244 (2014) 118131; doi:10.1016/j.amc.2014.06.100.Google Scholar
Zhu, L. and Wang, Y. G., “Rumor spreading model with noise interference in complex social networks”, Physica A 469 (2017) 750760; doi:10.1016/j.physa.2016.11.119.CrossRefGoogle Scholar