Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T07:30:03.577Z Has data issue: false hasContentIssue false

AN ADOMIAN DECOMPOSITION METHOD FOR SOLVING LIÉNARD EQUATIONS IN GENERAL FORM

Published online by Cambridge University Press:  05 March 2010

M. NILI AHMADABADI*
Affiliation:
Department of Mathematics, Yazd University, Yazd 89195-741, Iran (email: [email protected], [email protected])
F. M. MAALEK GHAINI
Affiliation:
Department of Mathematics, Yazd University, Yazd 89195-741, Iran (email: [email protected], [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this study, Liénard equations in their general form are treated using the Adomian decomposition method. The special structure of the Liénard equation is exploited to obtain a numerically efficient algorithm suitable for solution by a computer program.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Abbaoui, K. and Cherruault, Y., “Convergence of Adomian’s method applied to differential equations”, Comput. Math. Appl. 28 (1994) 103109.CrossRefGoogle Scholar
[2]Abbaoui, K. and Cherruault, Y., “New ideas for proving convergence of decomposition methods”, Comput. Math. Appl. 29 (1995) 103108.CrossRefGoogle Scholar
[3]Abbaoui, K., Cherruault, Y. and Seng, V., “Practical formula for the calculus of multivariable Adomian polynomials”, Math. Comput. Modelling 22 (1995) 8993.CrossRefGoogle Scholar
[4]Abbaoui, K., Pujol, M. J., Cherruault, Y., Himoun, N. and Grimalt, P., “A new formulation of Adomian method: convergence result”, Kybernetes 30 (2001) 11831191.CrossRefGoogle Scholar
[5]Adomian, G., “A review of the decomposition method in applied mathematics”, J. Math. Anal. Appl. 135 (1988) 501544.CrossRefGoogle Scholar
[6]Adomian, G., Solving Frontier problems of Physics: the decomposition method (Kluwer Academic Publishers, Boston, 1994).CrossRefGoogle Scholar
[7]Babolian, E. and Biazar, J., “On the order of convergence of Adomian method”, Appl. Math. Comput. 130 (2002) 383387.Google Scholar
[8]Babolian, E. and Javadi, Sh., “New method for calculating Adomian polynomials”, Appl. Math. Comput. 153 (2004) 253259.Google Scholar
[9]Cherruault, Y., “Convergence of Adomian’s method”, Kybernetes 8 (1988) 3138.Google Scholar
[10]Cherruault, Y. and Adomian, G., “Decomposition methods: a new proof of convergence”, Math. Comput. Modelling 18 (1993) 103106.CrossRefGoogle Scholar
[11]Chun, C., “A new iterative method for solving nonlinear equations”, Appl. Math. Comput. 178 (2006) 415422.Google Scholar
[12]Dixon, J. M., Tuszyfiski, J. A. and Sept, D., “Orthogonal trajectories and analytical solutions of the van der Pol equation without forcing”, Phys. Lett. A 239 (1998) 6571.CrossRefGoogle Scholar
[13]Guckenheimer, J., “Dynamics of the van der Pol equation”, IEEE Trans. Circuits Syst. 27 (1980) 983989.CrossRefGoogle Scholar
[14]Hale, J. K., Ordinary differential equations (Wiley, New York, 1980).Google Scholar
[15]Hosseini, M. M. and Nasabzadeh, H., “On the convergence of Adomian decomposition method”, Appl. Math. Comput. 182 (2006) 536543.Google Scholar
[16]Kaya, D. and El-Sayed, S. M., “A numerical implementation of the decomposition method for the Liénard equation”, Appl. Math. Comput. 171 (2005) 10951103.Google Scholar
[17]Repaci, A., “Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method”, Appl. Math. Lett. 3 (1990) 3539.CrossRefGoogle Scholar
[18]Wazwaz, A. M., “A reliable modification of Adomian decomposition method”, Appl. Math. Comput. 102 (1999) 7786.Google Scholar
[19]Wazwaz, A. M., “A new algorithm for calculating Adomian polynomials for nonlinear operators”, Appl. Math. Comput. 111 (2000) 5369.Google Scholar
[20]Zhu, Y., Chang, Q. and Wu, S., “A new algorithm for calculating Adomian polynomials”, Appl. Math. Comput. 169 (2005) 402416.Google Scholar
[21]Zwillinger, D., Handbook of differential equations (Academic Press, San Diego, CA, 1992).Google Scholar