Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-20T16:36:58.877Z Has data issue: false hasContentIssue false

MULTIPLE LOCAL AND GLOBAL BIFURCATIONS AND THEIR ROLE IN QUORUM SENSING DYNAMICS

Published online by Cambridge University Press:  09 April 2025

M. HARRIS
Affiliation:
Department of Computational Medicine, UCLA, Los Angeles, CA 90095, USA; e-mail: [email protected]
V. RIVERA–ESTAY
Affiliation:
Departamento de Matemática, Física y Estadística, Universidad Católica del Maule, San Miguel 3605, Talca, Chile; e-mail: [email protected]
P. AGUIRRE
Affiliation:
Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; e-mail: [email protected]
V. F. BREÑA–MEDINA*
Affiliation:
Departmento de Matemáticas, ITAM, Río Hondo 1, Ciudad de México 01080, Mexico

Abstract

Quorum sensing governs bacterial communication, playing a crucial role in regulating population behaviour. We propose a mathematical model that uncovers chaotic dynamics within quorum sensing networks, highlighting challenges to predictability. The model explores interactions between autoinducers and two bacterial subtypes, revealing oscillatory dynamics in both a constant autoinducer submodel and the full three-component model. In the latter case, we find that the complicated dynamics can be explained by the presence of homoclinic Shilnikov bifurcations. We employ a combination of normal-form analysis and numerical continuation methods to analyse the system.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aguirre, P., Krauskopf, B. and Osinga, H. M., “Global invariant manifolds near a Shilnikov homoclinic bifurcation”, J. Comput. Dyn. 1 (2014) 138; doi:10.3934/jcd.2014.1.1.Google Scholar
Arnold, V. I., Ordinary differential equations (Springer, Berlin, 1992).Google Scholar
Belyakov, L. A., “Bifurcation set in a system with homoclinic saddle curve”, Math. Notes Acad. Sci. USSR 28 (1980) 910916; doi:10.1007/BF01709154.Google Scholar
Belyakov, L. A. A., “Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero”, Math. Notes Acad. Sci. USSR 36 (1984) 838843; doi:10.1007/BF01139930.Google Scholar
Bjarnsholt, T. and Givskov, M., “Quorum-sensing blockade as a strategy for enhancing host defenses against bacterial pathogens”, Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1483) (2007) 12131222; doi:10.1098/rstb.2007.2046.Google ScholarPubMed
Chen, M., Liu, H. and Yan, F., “Modelling and analysing biological oscillations in quorum sensing networks”, IET Syst. Biol. 14 (2020) 190199; doi:10.1049/iet-syb.2019.0079.Google ScholarPubMed
Chopp, D. L., Kirisits, M. J., Moran, B. and Parsek, M. R., “A mathematical model of quorum sensing in a growing bacterial biofilm”, J. Ind. Microbiol. Biotech. 29 (2002) 339346; doi:10.1038/sj.jim.7000316.Google Scholar
Dockery, J. D. and Keener, J. P., “A mathematical model for quorum sensing in Pseudomonas aeruginosa ”, Bull. Math. Biol. 63 (2001) 95116; doi:10.1006/bulm.2000.0205.Google ScholarPubMed
Doedel, E. J., Champneys, A. R., Dercole, F., Fairgrieve, T. F., Kuznetsov, Y., Oldeman, B. E., Paffenroth, R. C., Sandstede, B., Wang, X. J. and Zhang, C. H., AUTO-07p: Continuation and bifurcation software for ordinary differential equations, Department of Computer Science, Concordia University, Montreal, QC, Canada, 2010.Google Scholar
Dong, Y. H., Wang, L. H. and Zhang, L. H., “Quorum-quenching microbial infections: mechanisms and implications”, Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1483) (2007) 12011211; doi:10.1098/rstb.2007.2045.Google ScholarPubMed
Dumortier, F., Llibre, J. and Artés, J. C., Qualitative theory of planar differential systems (Springer, Berlin, 2006).Google Scholar
Elowitz, M. and Leibler, S., “A synthetic oscillatory network of transcriptional regulators”, Nature 403(6767) (2000) 335338; doi:10.1038/35002125.Google ScholarPubMed
Frederick, M. R., Kuttler, C., Hense, B. A. and Eberl, H. J., “A mathematical model of quorum sensing regulated EPS production in biofilm communities”, Theor. Biol. Med. Model. 8 (2011) Article ID: 8; doi:10.1186/1742-4682-8-8.Google ScholarPubMed
García-Ojalvo, J., Elowitz, M. B. and Strogatz, S. H., “Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing”, Proc. Natl. Acad. Sci. USA 30 (2004) 1095510960; doi:10.1073/pnas.0307095101.Google Scholar
Gonchenko, S. V., Turaev, D. V., Gaspard, P. and Nicolis, G., “Complexity in the bifurcation structure of homoclinic loops to a saddle-focus”, Nonlinearity 10 (1997) Article ID: 409; doi:10.1088/0951-7715/10/2/006.Google Scholar
Govaerts, W., Kuznetsov, Y. A., De Witte, V., Dhooge, A., Meijer, H. G. E., Mestrom, W., Riet, A. M. and Sautois, B., MATCONT and CL_MATCONT: continuation toolboxes in MATLAB (2011). https://venturi.soe.ucsc.edu/sites/default/files/ManualSep2012.pdf.Google Scholar
Guckenheimer, J. and Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 2nd edn (Springer, New York, 1986).Google Scholar
Hentzer et al., M.Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors”, EMBO J. 22 (2003) 38033815; doi:10.1093/emboj/cdg366.Google Scholar
Jiang, Q., Chen, J., Yang, C., Yin, Y. and Yao, K., “Quorum sensing: a prospective therapeutic target for bacterial diseases”, BioMed Res. Int. 2019 (2019) 2015978; doi:10.1155/2019/2015978.Google ScholarPubMed
Kaur, A., Capalash, N. and Sharma, P., “Quorum sensing in thermophiles: prevalence of autoinducer-2 system”, BMC Microbiol. 18 (2018) Article ID: 62; doi:10.1186/s12866-018-1204-x.CrossRefGoogle ScholarPubMed
Kitano, H., “Biological robustness”, Nat. Rev. Genet. 5 (2004) 826837; doi:10.1038/nrg1471.CrossRefGoogle ScholarPubMed
Kuttler, C. and Maslovskaya, A., “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Appl. Math. Model. 93 (2021) 360375; doi:10.1016/j.apm.2020.12.019.CrossRefGoogle Scholar
Kuznetsov, Y. A., Elements of applied bifurcation theory, 3rd edn (Springer, New York, 2004).CrossRefGoogle Scholar
Li, B.-W., Fu, C., Zhang, H. and Wang, X., “Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators”, Phys. Rev. E 86 (2012) Article ID: 046207; doi:10.1103/PhysRevE.86.046207.Google Scholar
Li, Z. and Nair, S. K., “Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals?Protein Sci. 21(10) (2012) 14031417; doi:10.1002/pro.2132.CrossRefGoogle ScholarPubMed
Mattila-Sandholm, T. and Wirtanen, G., “Biofilm formation in the industry: a review”, Food Rev. Internat. 8(4) (1992) 573603; doi:10.1080/87559129209540953.CrossRefGoogle Scholar
McClean et al., K. H.Quorum sensing in Chromobacterium violeceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones”, Microbiology 143 (1997) 37033711; doi:10.1099/00221287-143-12-3703.CrossRefGoogle Scholar
Miller, M. B. and Bassler, B. L., “Quorum sensing in bacteria”, Annu. Rev. Microbiol. 55 (2001), 165199; doi:10.1146/annurev.micro.55.1.165.Google ScholarPubMed
Mukherjee, M. and Bassler, B. L., “Bacterial quorum sensing in complex and dynamically changing environments”, Nat. Rev. Microbiol. 17(6) (2019), 371382; doi:10.1038/s41579-019-0186-5.Google ScholarPubMed
Naga, N. G., Shaaban, M. I. and El-Metwally, M. M., “An insight on the powerful of bacterial quorum sensing inhibition”, Eur. J. Clin. Microbiol. Infect. Dis. 43 (2024) 20712081; doi:10.1007/s10096-024-04920-w.CrossRefGoogle ScholarPubMed
Nelson, K. H., Platt, T. and Hastings, J. W., “Cellular control of the synthesis and activity of the bacterial luminescent system”, J. Bacteriol. 104(1) (1970) 313322; doi:10.1128/jb.104.1.313-322.1970.CrossRefGoogle Scholar
Perez-Velazquez, J., Quinones, B., Hense, B. A. and Kuttler, C., “A mathematical model to investigate quorum sensing regulation and its heterogeneity in Pseudomonas syringae on leaves”, Ecolog. Complex. 21 (2015) 128141; doi:10.1016/j.ecocom.2014.12.003.CrossRefGoogle Scholar
Rémy, B., Mion, S., Plener, L., Elias, M., Chabrière, E. and Daudé, D., “Interference in bacterial quorum sensing: a biopharmaceutical perspective”, Front. Pharmacol. 9 (2018) Article ID: 203; doi:10.3389/fphar.2018.00203.Google ScholarPubMed
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. and Davies, D. G., “ Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm”, J. Bacteriol. 184 (2002) 11401154; doi:10.1128/jb.184.4.1140-1154.2002.CrossRefGoogle ScholarPubMed
Taylor, A. F., Tinsley, M. R., Wang, F. and Huang, Z., “Dynamical quorum sensing and synchronization in large populations of chemical oscillators”, Science 323(5914) (2009) 614617; doi:10.1126/science.1166253.Google ScholarPubMed
Visick, K. L., Foster, J., McFall-Ngai, M. and Ruby, E. G., “ Vibrio fischeri lux genes play an important role in colonization and development of the host light organ”, J. Bacteriol. 182 (1970) 45784586; doi:10.1128/JB.182.16.4578-4586.2000.Google Scholar
Ward, J. P., King, J. R., Koerber, A. J., Williams, P., Croft, J. M. and Sockett, R. E., “Mathematical modelling of quorum sensing in bacteria”, Math. Med. Biol. 18 (2001) 263292; doi:10.1007/s11538-016-0160-6.Google Scholar
Waters, C. M. and Bassler, B. L., “Quorum sensing: cell-to-cell communication in bacteria”, Annu. Rev. Cell. Dev. Biol. 21 (2005) 319346; doi:10.1146/annurev.cellbio.21.012704.131001.Google Scholar
Wieczorek, S. and Krauskopf, B., “Bifurcations of n-homoclinic orbits in optically injected lasers”, Nonlinearity 18 (2005) Article ID: 1095; doi:10.1088/0951-7715/18/3/010.CrossRefGoogle Scholar
Wu, H., Song, Z., Hentzer, M., Andersen, J.B, Molin, S., Givsov, M. and Hoiby, N., “Synthetic furnanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice”, J. Antimicrob. Chemother. 53 (2004) 10541061; doi:10.1093/jac/dkh223.CrossRefGoogle ScholarPubMed