Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T15:51:19.479Z Has data issue: false hasContentIssue false

INTERACTION OF A SINGULAR SURFACE WITH A STRONG SHOCK IN THE INTERSTELLAR GAS CLOUDS

Published online by Cambridge University Press:  23 September 2021

J. JENA*
Affiliation:
Department of Mathematics, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi110 078, India; e-mail: [email protected].
S. MITTAL
Affiliation:
Department of Mathematics, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi110 078, India; e-mail: [email protected].

Abstract

We investigate the interaction between a singular surface and a strong shock in the self-gravitating interstellar gas clouds with the assumption of spherical symmetry. Using the method of the Lie group of transformations, a particular solution of the flow variables and the cooling–heating function for an infinitely strong shock is obtained. This paper explores an application of the singular surface theory in the evolution of an acceleration wave front propagating through an unperturbed medium. We discuss the formation of an acceleration, considering the cases of compression and expansion waves. The influence of the cooling–heating function on a shock formation is explained. The results of a collision between a strong shock and an acceleration wave are discussed using the Lax evolutionary conditions.

Type
Research Article
Copyright
© Australian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisnovatyi-Kogan, G. S. and Murzina, M. V. A., “Early stages of relativistic fireball expansion”, Phys. Rev. D 52 (1995) 43804392; doi:10.1103/PhysRevD.52.4380.CrossRefGoogle ScholarPubMed
Bisnovatyi-Kogan, G. S. and Murzina, M. V. A., “Burst propagation through interstellar gas self-similar solutions”, Astron. Astrophys. 307 (1996) 686696, available at http://adsabs.harvard.edu/full/1996A.Google Scholar
Bluman, G. W., Cheviakov, A. F. and Anco, S. C., Applications of symmetry methods to partial differential equations (Springer, New York, 2010); doi:10.1007/978-0-387-68028-6.CrossRefGoogle Scholar
Bluman, G. W. and Kumei, S., Symmetries and differential equations (Springer, New York, 1989); doi:10.1007/978-1-4757-4307-4.CrossRefGoogle Scholar
Chadha, M. and Jena, J., “Self similar solutions and converging shocks in a non-ideal gas with dust particles”, Int. J. Non Linear Mech. 65 (2014) 164172; doi:10.1016/j.ijnonlinmec.2014.05.013.CrossRefGoogle Scholar
Crampin, D. J., Disney, M. J., McNally, D. and Wright, A. E., “The collapse of interstellar gas clouds—III. Numerical methods”, Mon. Not. R. Astron. Soc. 145 (1969) 423433; doi:10.1093/mnras/145.4.423.CrossRefGoogle Scholar
Disney, M. J., McNally, D. and Wright, A. E., “The collapse of interstellar gas clouds—II. An analytical study”, Mon. Not. R. Astron. Soc. 140 (1968) 319330; doi:10.1093/mnras/140.3.319.CrossRefGoogle Scholar
Disney, M. J., McNally, D. and Wright, A. E., “The collapse of interstellar gas clouds—IV. Models of collapse and a theory of star formation”, Mon. Not. R. Astron. Soc. 146 (1989) 123160; doi:10.1093/mnras/146.2.123.CrossRefGoogle Scholar
Ferraioli, F., Ruggeri, T. and Virgopia, N., “Problems on gravitational collapse of interstellar gas clouds, II. Caustic and critical times for a one-dimensional hydrodynamic model”, Astrophys. Space Sci. 56 (1978) 303321; doi:10.1007/BF01879562.CrossRefGoogle Scholar
Ferraioli, F. and Virgopia, N., “Problems on gravitational collapse of interstellar gas clouds. I. Numerical integration of the equations of hydrodynamics—the case of spherical symmetry”, Mem. Soc. Astron. It. 46 (1975) 313339, available at http://adsabs.harvard.edu/full/1975MmSAI. 46.313F.Google Scholar
Hansen, A. G., Similarity analysis of boundary value problems in engineering (Prentice Hall, Englewood Cliffs, NJ, 1964), available at https://www.google.co.in/books/edition/Similarity_ Analyses_of_Boundary_Value_Pr/s_5QAAAAMAAJ?hl=en.Google Scholar
Hunter, J. H., “The collapse of interstellar gas clouds and the formation of stars”, Mon. Not. R. Astron. Soc. 142 (1969) 473498; doi:10.1093/mnras/142.4.473.CrossRefGoogle Scholar
Jeffrey, A., “The propagation of weak discontinuities in quasi-linear hyperbolic systems with discontinuous coefficients. Part I: Fundamental theory”, Appl. Anal. 3 (1973) 79100; doi:10.1080/00036817308839058.CrossRefGoogle Scholar
Jeffrey, A., Quasilinear hyperbolic systems and waves (Pitman Publishing, London, 1976); doi:10.1002/aic.690230213.Google Scholar
Jena, J., “Lie group theoretic method for analysing interaction of discontinuous waves in a relaxing gas”, Z. Angew. Math. Phys. 58 (2007) 416430; doi:10.1007/s00033-006-3087-1.CrossRefGoogle Scholar
Jena, J. and Sharma, V. D., “Self similar shocks in a dusty gas”, Int. J. Non Linear Mech. 34 (1999) 313327; doi:10.1016/S0020-7462(98)00035-3.CrossRefGoogle Scholar
Kazhdan, I. M. and Murzina, M., “Shock wave emergence at the stellar surface and the subsequent gas expansion into a vacuum—the sphericity involvement”, Astrophys. J. 400 (1992) 192202; doi:10.1086/171986.CrossRefGoogle Scholar
Larson, R. B., “The collapse of a rotating cloud”, Mon. Not. R. Astron. Soc. 156 (1972) 437458; doi:10.1093/mnras/156.4.437.CrossRefGoogle Scholar
Lax, P. D., “Hyperbolic system of conservation laws I”, Comm. Pure Appl. Math. 10 (1957) 537566; doi:10.1002/cpa.3160100406.CrossRefGoogle Scholar
Logan, J. D. and Perez, J. D. J., “Similarity solutions for reactive shock hydrodynamics”, SIAM J. Appl. Math. 39 (1980) 512527; doi:10.1137/0139042.CrossRefGoogle Scholar
McCarthy, M. F., “Singular surfaces and waves”, in: Continuum physics, Volume 2 (ed Eringen, A. C.), (Academic Press, London, 1975) 449521; doi:10.1016/B978-0-12-240802-1.50015-8.Google Scholar
McNally, D., “The collapse of interstellar gas clouds. I. The effect of cooling on clouds having initially polytropic density distributions”, Astrophys. J. 140 (1964) 10881099; doi:10.1086/148007.CrossRefGoogle Scholar
Mentrelli, A., Ruggeri, T., Sugiyama, M. and Zhao, T., “Interaction between a shock and an acceleration wave in a perfect gas for increasing shock strength”, Wave Motion 45 (2008) 498517; doi:10.1016/j.wavemoti.2007.09.005.CrossRefGoogle Scholar
Mittal, S. and Jena, J., “Interaction of a singular surface with a characteristic shock in a relaxing gas with dust particles”, Z. Naturforsch. A 75 (2019) 119129; doi:10.1515/zna-2019-0217.CrossRefGoogle Scholar
Mouschovias, T., “Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II—Results”, Astrophys. J. 207 (1976) 141158; doi:10.1086/154478.CrossRefGoogle Scholar
Penston, M. V., “Dynamics of self-gravitating gaseous spheres I”, R. Obs. Bull. 117 (1966) 299312, available at https://ui.adsabs.harvard.edu/abs/1966RGOB.117.299Ps.Google Scholar
Penston, M. V., “Dynamics of self-gravitating gaseous spheres—III. Analytical results in the free-fall of isothermal cases”, Mon. Not. R. Astron. Soc. 144 (1969) 425448; doi:10.1093/mnras/144.4.425.CrossRefGoogle Scholar
Radha, Ch. and Sharma, V. D. and Jeffrey, A., “Interaction of shock waves with discontinuities”, Appl. Anal. 50 (1993) 145166; doi:10.1080/00036819308840191.CrossRefGoogle Scholar
Shah, S. and Singh, R., “Collision of a steepened wave with a blast wave in dusty real reacting gases”, Phys. Fluids 31 (2019) 076103; doi:10.1063/1.5109288.CrossRefGoogle Scholar
Shah, S. and Singh, R., “Evolution of singular surface and interaction with a strong shock in reacting polytropic gases using Lie group theory”, Int. J. Non Linear Mech. 116 (2019) 173180; doi:10.1016/j.ijnonlinmec.2019.06.013.CrossRefGoogle Scholar
Sharma, V. D. and Radha, Ch., “Similarity solutions for converging shocks in a relaxing gas”, Internat. J. Engrg. Sci. 33 (1995) 535553; doi:10.1016/0020-7225(94)00086-7.CrossRefGoogle Scholar
Thomas, T. Y., “The general theory of compatibility conditions”, Internat. J. Engrg. Sci. 4 (1966) 207233; doi:10.1016/0020-7225(66)90001-2.CrossRefGoogle Scholar
Varley, E. and Cumberbatch, E., “Non-linear theory of wavefront propagation”, J. Inst. Math. Appl. 1 (1965) 101112; doi:10.1093/imamat/1.2.101.CrossRefGoogle Scholar