Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T20:25:30.676Z Has data issue: false hasContentIssue false

Sea-level change and shore-line evolution in Aegean Greece since Upper Palaeolithic time

Published online by Cambridge University Press:  02 January 2015

Kurt Lambeck*
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

‘As the glaciation ended, the ice melted and the sea-level rose.’ Yes — but it has not been as simple as that, as the Earth has adjusted in several ways to the changing surface-loads it suffers under ice and under weight of water. The important issues are set out in a simple mathematical treatment, and their varied consequences are shown for Greece and especially for the Greek coastal plains and the Greek islands, where the impact on human settlement has been large.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1996

References

Bard, E., Hamelin, B., Fairbanks, R. C. & Zindler, A.. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals, Nature 345: 405–10.CrossRefGoogle Scholar
Bintliff, J. 1976. The history of archaeo-geographic studies of prehistoric Greece, and recent fieldwork, in Mycenaean geography: 316. Cambridge: Cambridge University Press & British Association for Mycenaean Studies.Google Scholar
Cathles, L. M. 1975. Tile viscosity of the Earth's mantle. Princeton (NJ): Princeton University Press.Google Scholar
Chappell, J. 1983. Evidence for a smoothly falling sea-level relative to north Queensland, Australia, during the past 6000 years, Nature 302: 406–8.Google Scholar
Chappell, J. & Pollach, H.. 1991. Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea, Nature 349: 147–9.CrossRefGoogle Scholar
Chappell, J. & Shackleton, N. J.. 1986. Oxygen isotopes and sea-level, Nature 324: 137–40.Google Scholar
Cherry, J. F. & Torrence, R.. 1982. The earliest prehistory of Melos, in Renfrew, C. & Wagstaff, M. (ed.), An island polity: the archaeology and exploitation in Melos: 2434. Cambridge: Cambridge University Press.Google Scholar
Collier, R.E.L., Leeder, M. R., Rowe, P. J. & Atkinson, T. C.. 1992. Rates of tectonic uplift in the Corinth and Megara Basins, Central Greece, Tectonics 11: 1159–67.Google Scholar
Curray, J. R. 1965. Late Quaternary history, continental shelves of the United States, in Wright, H. E. & Frey, D. G. (ed.), The Quaternary of the United States: 723–35. Princeton (NJ): Princeton University Press.Google Scholar
Denton, G. H. & Hughes, T. J. (ed.). 1981. The last great ice sheets. New York (NY): Wiley.Google Scholar
Fairbanks, R. G. 1989. A17,000-year glacio-eustatic sea-level record: influence of glacial melting dates on the Younger Dryas event and deep ocean circulation, Nature 342: 637–42.Google Scholar
Flemming, N. C. 1978. Holocene eustatic changes and coastal tectonics in the northeast Mediterranean: implications for models of crustal consumption, Philosophical Transactions of the Royal Society of London A289: 405–58.Google Scholar
Gamble, C. 1986. The Palaeolithic settlement of Europe. Cambridge: Cambridge University Press.Google Scholar
HMGS = Hellenic Military Geographical Service. 1992. 1:50,000 map sheet Spetsai. Athens.Google Scholar
HNHS = Hellenic Navy Hydrographic Service. 1993. 1:100,000 Nautical Charts 412-414 and 150,000 Nautical Charts 415, 421, 423. Athens.Google Scholar
Hyvarinen, H. 1980. Relative sea-level changes near Helsinki, southern Finland, during early Litorina time, Bulletin of the Geological Society of Finland 52: 207–19.CrossRefGoogle Scholar
Jackson, J. 1994. Active tectonics of the Aegean region, Annual Review of Earth and Planetary Science 22: 239–71.Google Scholar
Jacobsen, T. W. 1969. Excavations at Porto Cheli and vicinity, preliminary Report, II: The Franchthi Cave, 1967-1968, Hesperia 38: 343–81.Google Scholar
Jacobsen, T. W. 1976. 17,000 years of Greek prehistory, Scientific American 234 (6): 7687.CrossRefGoogle Scholar
Jacobsen, T. W. & Farran, W. R.. 1987. Franchthi Cave andParalia. Bloomington (IN): Indiana University Press. Excavations at Franchthi Cave, Greece Fascicle 1.Google Scholar
Kelletat, D., Kowalczyk, G., Schröder, B. & Winter, K. P.. 1976. A synoptic view on the neotectonic development of the Peloponnesian coastal regions, Zeitschrift der Deutsche Geologische Gesellschaft 27: 447–65.Google Scholar
Keraudren, B. & Sorel, D.. 1987. The terraces of Corinth (Greece) – a detailed record of eustatic sea-level variations during the last 500,000 years. Marine Geology 77: 99107.Google Scholar
Klein, J., Lerman, J. C., Damon, P. E. & Ralph, E. K.. 1982. Calibration of radiocarbon dates, Radiocarbon 24: 103–50.CrossRefGoogle Scholar
Kraft, J.C., Aschenbrenner, S. E. & Rapp, G. J.. 1977. Paleo-geographic reconstructions of coastal Aegean archaeological sites, Science 195: 941–47.Google Scholar
Kraft, J. C. & Rapp, G. J.. 1975. Late Holocene paleogeography of the coastal plain of the Gulf of Messenia, Greece, and its relationships to archaeological settings and coastal change. Geological Society of America Bulletin 86:11911208.Google Scholar
Kraft, J.C., Rapp, G. R. & Aschenbrenner, S. E.. 1980. Late Holocene palaeogeomorphic reconstructions in the area of the Bay of Navarino: Sandy Pylos, Journal of Archaeological Science 7: 187210.Google Scholar
Lambeck, K. 1988. Geophysical geodesy: the slow deformations of the earth. Oxford: Oxford University Press.Google Scholar
Lambeck, K. 1993. Glacial rebound of the British Isles II: A high resolution, high-precision model, Geophysical Journal International 115: 960–90.Google Scholar
Lambeck, K. 1995a. Late Pleistocene and Holocene sea-level change in Greece and southwestern Turkey: a separation of eustatic, isostatic and tectonic contributions, Geophysical Journal International 122: 1022–44.Google Scholar
Lambeck, K. 1995b. Constraints on the Late Weichselian ice sheet over the Barents Sea from observations of raised shorelines, Quaternary Science Review 14: 116.Google Scholar
In press. Sea-level change along the French Atlantic coast since the time of the Lastglacial Maximum, Palaeo-geography, Palaeoclimatology, Palaeoecology. Google Scholar
Lambeck, K., Johnston, P. & Nakada, M.. 1990. Holocene glacial rebound and sea-level change in NW Europe, Geophysical Journal International 103: 451–68.Google Scholar
Lambeck, K., Johnston, P., Smither, C. & Nakada, M.. 1996. Glacial rebound of the British Isles III: Constraints on mantle viscosity, Geophysical Journal International 125: 340–54.Google Scholar
Lambeck, K. & Nakada, M.. 1990. Late Pleistocene and Holocene sea-level change along the Australian coast, Palaeo-geography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section] 89: 143–76.Google Scholar
Milliman, J. D. & Emery, K. O.. 1968. Sea-levels during the past 35,000 years, Science 162: 1121–3.Google Scholar
Mitrovica, J. X. & Peltier, W. R.. 1991. On postglacial geoid subsidence over the equatorial oceans, Journal of Geophysical Research 96: 20,05371.Google Scholar
Mitrovica, J. X. & Peltier, W. R.. 1993. The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectrum, Geophysical Journal International 114: 4562.Google Scholar
Morrison, I. A. 1968. Appendix I. Relative sea-level change in the Saliagos area since Neolithic times, in Evans, J. D. & Renfrew, C. (ed.), Excavations at Saliagos near Antiparos: 92–8. London: Thames & Hudson.Google Scholar
Nakada, M. & Lambeck, K.. 1987. Glacial rebound and relative sea-level variations: a new appraisal, Geophysical Journal of the Royal Astronomical Society 90: 171224.Google Scholar
Nakada, M. & Lambeck, K.. 1988. The melting history of the Late Pleistocene Antarctic ice sheet, Nature 333: 3640.CrossRefGoogle Scholar
Peltier, W. R. & Andrews, J. T.. 1976. Glacial-isostatic adjustment – 1. The forward problem, Geophysical Journal of the Royal Astronomical Society 46: 605–46.CrossRefGoogle Scholar
Perles, C. 1979. Des navigateurs méditerranéens il y a 10,000 ans, La Recherche 10: 82–3.Google Scholar
Perles, C. 1987a. Les industries lithiques taillés de Franchthi (Argolide, Grèce), in Perles, (ed.): 142–3.Google Scholar
Perles, C. (Ed.). 1987b. Présentation générale et industries paléolithiques. Bloomington (IN): Indiana University Press. Excavations at Franchthi Cave, Greece Fascicle 3 (1).Google Scholar
Plrazzoli, P. A., Stiros, S. C., Arnold, M., Laborel, J., Labokel-Deguen, F. & Papageorgiou, S.. 1994. Episodic uplift deduced from Holocene shorelines in the Perachora Peninsula, Corinth area, Greece, Tectonophysics 229: 201–9.Google Scholar
Renfrew, C. 1972. The emergence of civilisation: the Cyclades and the Aegean in the 3rd millennium BC. London: Methuen.Google Scholar
Renfrew, C. & Aspinall, A.. 1987. Aegean obsidian and Franchthi Cave, in Perles, (ed): 257–70.Google Scholar
Sambridge, M., Braun, J. & Mcqueen, H.. 1995. Geophysical parametrization and interpolation of irregular data using natural neighbours, Geophysical Journal International 122: 837–57.Google Scholar
Shackleton, N. J. 1987. Oxygen isotopes, ice volume and sea-level, Quaternary Science Review 6: 183–90.CrossRefGoogle Scholar
Thommeret, Y., Laborel, J., Montaggioni, L. F. & PlRAZZOLI, P. A.. 1981. Late Holocene shoreline changes and seismo-tec-tonic displacements in western Crete (Greece), Zeitschrift für Geomorphologie (neue Folge) 40: 127–49.Google Scholar
Tushingham, A. M. & Peltier, W. R.. 1991. Ice 3G: a new global model of Late Pleistocene déglaciation based upon geophysical predictions of postglacial sea-level change, Journal of Geophysical Research 96: 4497–523.Google Scholar
Van Andel, T. H. 1987. The adjacent sea, in van Andel, T. H. & Sutton, S. B. (ed.), Landscapes and people of the Franchthi region: 364. Bloomington (IN): Indiana University Press. Excavations at Franchthi Cave, Greece Fascicle 2.Google Scholar
Van Andel, T.H. 1989. Late Quaternary sea-level changes and archaeology, Antiquity 63: 733–46.Google Scholar
Van Andel, T.H. & Lianos, N.. 1983. Prehistoric and historic shorelines of the southern Argolid Peninsula: a subbottoin profiler study, Nautical Archaeology 12 (4): 303–24.Google Scholar
Van Andel, T.H. & Shackleton, J.C.. 1982. Late Paleolithic and Mesolithic coastlines of Greece and the Aegean, Journal of Field Archaeology 9: 445–54.Google Scholar
Zwartz, D., Lambeck, K., Bird, M. & Stone, J.. IN PREPARATION. Constraints on the former Antarctic ice sheet from sea-level observations and geodynamic modelling, in Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena, Italy.Google Scholar